JavaShuo
栏目
标签
DOREFA-NET: TRAINING LOW BITWIDTH CONVOLUTIONAL NEURAL NETWORKS WITH LOW BITWIDTH GRADIENTS
时间 2020-12-24
原文
原文链接
BNN和异或网将权重和卷积层的值进行量化,进而将在前相传播过程中花费最多的卷积操作转化为了两个bit向量的逐比特的点积: 这里bitcount计算比特向量中比特的数量。 之前的网络都没能在反向传播保持8比特以下的精度的同时,能够拥有可接受的精度。 dorefa-net的创新点在于: 1、它能够以任意的精度量化权重、激活层和梯度。 2、由于比特卷积可以高效地在各种设备上实现,因此他为在各种软件上实现
>>阅读原文<<
相关文章
1.
量化网络训练--Towards Effective Low-bitwidth Convolutional Neural Networks
2.
TRAINING DEEP NEURAL NETWORKS WITH LOW PRECISION MULTIPLICATIONS
3.
Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization
4.
《SWALP:Stochastic Weight Averaging in Low-Precision Training》
5.
LCDet Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems
6.
Paper reading (四十二):Low Data Drug Discovery with One-Shot Learning
7.
Extremely Low Bit Neural Network: Squeeze the Last Bit Out with ADMM
8.
论文阅读:Learning Dual Convolutional Neural Networks for Low-Level Vision
9.
论文阅读笔记(一):Learning Dual Convolutional Neural Networks for Low-Level Vision
10.
论文阅读(【CVPR2018】Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision)
更多相关文章...
•
PHP range() 函数
-
PHP参考手册
•
XSLT
元素
-
XSLT 教程
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
•
漫谈MySQL的锁机制
相关标签/搜索
low
slow&&low
low篇
Low版
low&medium
gradients
convolutional
neural
training
flink training
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
【Java8新特性_尚硅谷】P1_P5
2.
SpringSecurity 基础应用
3.
SlowFast Networks for Video Recognition
4.
074-enable-right-click
5.
WindowFocusListener窗体焦点监听器
6.
DNS部署(二)DNS的解析(正向、反向、双向、邮件解析及域名转换)
7.
Java基础(十九)集合(1)集合中主要接口和实现类
8.
浏览器工作原理学习笔记
9.
chrome浏览器构架学习笔记
10.
eclipse引用sun.misc开头的类
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
量化网络训练--Towards Effective Low-bitwidth Convolutional Neural Networks
2.
TRAINING DEEP NEURAL NETWORKS WITH LOW PRECISION MULTIPLICATIONS
3.
Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization
4.
《SWALP:Stochastic Weight Averaging in Low-Precision Training》
5.
LCDet Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems
6.
Paper reading (四十二):Low Data Drug Discovery with One-Shot Learning
7.
Extremely Low Bit Neural Network: Squeeze the Last Bit Out with ADMM
8.
论文阅读:Learning Dual Convolutional Neural Networks for Low-Level Vision
9.
论文阅读笔记(一):Learning Dual Convolutional Neural Networks for Low-Level Vision
10.
论文阅读(【CVPR2018】Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision)
>>更多相关文章<<