反向传播算法推导过程

转自:https://www.zhihu.com/question/24827633/answer/91489990网络

 

 

1. 前向传播

对于节点 h_1 来讲, h_1 的净输入 net_{h_1} 以下:函数

net_{h_1}=w_1\times i_1+w_2\times i_2+b_1\times 1
接着对 net_{h_1} 作一个sigmoid函数获得节点 h_1 的输出:
out_{h_1}=\frac{1}{1+e^{-net_{h_1}}}
相似的,咱们能获得节点 h_2 、 o_1 、 o_2 的输出 out_{h_2} 、 out_{o_1} 、 out_{o_2} 。blog

2. 偏差

获得结果后,整个神经网络的输出偏差能够表示为:
E_{total}=\sum\frac{1}{2}(target-output)^2
其中 output 就是刚刚经过前向传播算出来的 out_{o_1} 、 out_{o_2} ; target 是节点 o_1 、 o_2 的目标值。 E_{total} 用来衡量两者的偏差。
这个 E_{total} 也能够认为是cost function,不过这里省略了防止overfit的regularization term( \sum{w_i^2} )
展开获得
E_{total}=E{o_1}+E{o_2}=\frac{1}{2}(target_{o_1}-out_{o_1})^2+\frac{1}{2}(target_{o_2}-out_{o_2})^2get

3. 后向传播

3.1. 对输出层的 w_5

经过梯度降低调整 w_5 ,须要求 \frac{\partial {E_{total}}}{\partial {w_5}} ,由链式法则:
\frac{\partial {E_{total}}}{\partial {w_5}}=\frac{\partial {E_{total}}}{\partial {out_{o_1}}}\frac{\partial {out_{o_1}}}{\partial {net_{o_1}}}\frac{\partial {net_{o_1}}}{\partial {w_5}} ,
以下图所示:it

 

 

\frac{\partial {E_{total}}}{\partial {out_{o_1}}}=\frac{\partial}{\partial {out_{o_1}}}(\frac{1}{2}(target_{o_1}-out_{o_1})^2+\frac{1}{2}(target_{o_2}-out_{o_2})^2)=-(target_{o_1}-out_{o_1})

\frac{\partial {out_{o_1}}}{\partial {net_{o_1}}}=\frac{\partial }{\partial {net_{o_1}}}\frac{1}{1+e^{-net_{o_1}}}=out_{o_1}(1-out_{o_1})
\frac{\partial {net_{o_1}}}{\partial {w_5}}=\frac{\partial}{\partial {w_5}}(w_5\times out_{h_1}+w_6\times out_{h_2}+b_2\times 1)=out_{h_1}
以上3个相乘获得梯度 \frac{\partial {E_{total}}}{\partial {w_5}} ,以后就能够用这个梯度训练了:
w_5^+=w_5-\eta \frac{\partial {E_{total}}}{\partial {w_5}}
不少教材好比Stanford的课程,会把中间结果 \frac{\partial {E_{total}}}{\partial {net_{o_1}}}=\frac{\partial {E_{total}}}{\partial {out_{o_1}}}\frac{\partial {out_{o_1}}}{\partial {net_{o_1}}} 记作 \delta_{o_1} ,表示这个节点对最终的偏差须要负多少责任。。因此有 \frac{\partial {E_{total}}}{\partial {w_5}}=\delta_{o_1}out_{h_1} 。io

3.2. 对隐藏层的 w_1

经过梯度降低调整 w_1 ,须要求 \frac{\partial {E_{total}}}{\partial {w_1}} ,由链式法则:
\frac{\partial {E_{total}}}{\partial {w_1}}=\frac{\partial {E_{total}}}{\partial {out_{h_1}}}\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}\frac{\partial {net_{h_1}}}{\partial {w_1}} ,function

以下图所示:神经网络

 

 

参数 w_1 影响了 net_{h_1} ,进而影响了 out_{h_1} ,以后又影响到 E_{o_1} 、 E_{o_2} 。
求解每一个部分:im

\frac{\partial {E_{total}}}{\partial {out_{h_1}}}=\frac{\partial {E_{o_1}}}{\partial {out_{h_1}}}+\frac{\partial {E_{o_2}}}{\partial {out_{h_1}}} ,img

其中

\frac{\partial {E_{o_1}}}{\partial {out_{h_1}}}=\frac{\partial {E_{o_1}}}{\partial {net_{o_1}}}\times \frac{\partial {net_{o_1}}}{\partial {out_{h_1}}}=\delta_{o_1}\times \frac{\partial {net_{o_1}}}{\partial {out_{h_1}}}=\delta_{o_1}\times \frac{\partial}{\partial {out_{h_1}}}(w_5\times out_{h_1}+w_6\times out_{h_2}+b_2\times 1)=\delta_{o_1}w_5 ,这里 \delta_{o_1} 以前计算过

\frac{\partial {E_{o_2}}}{\partial {out_{h_1}}} 的计算也相似,因此获得
\frac{\partial {E_{total}}}{\partial {out_{h_1}}}=\delta_{o_1}w_5+\delta_{o_2}w_7
\frac{\partial {E_{total}}}{\partial {w_1}} 的链式中其余两项以下:
\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}=out_{h_1}(1-out_{h_1}) ,
\frac{\partial {net_{h_1}}}{\partial {w_1}}=\frac{\partial }{\partial {w_1}}(w_1\times i_1+w_2\times i_2+b_1\times 1)=i_1

相乘获得

\frac{\partial {E_{total}}}{\partial {w_1}}=\frac{\partial {E_{total}}}{\partial {out_{h_1}}}\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}\frac{\partial {net_{h_1}}}{\partial {w_1}}=(\delta_{o_1}w_5+\delta_{o_2}w_7)\times out_{h_1}(1-out_{h_1}) \times i_1

获得梯度后,就能够对 w_1 迭代了:

w_1^+=w_1-\eta \frac{\partial{E_{total}}}{\partial{w_1}} 。

在前一个式子里一样能够对 \delta_{h_1} 进行定义,

\delta_{h_1}=\frac{\partial {E_{total}}}{\partial {out_{h_1}}}\frac{\partial {out_{h_1}}}{\partial {net_{h_1}}}=(\delta_{o_1}w_5+\delta_{o_2}w_7)\times out_{h_1}(1-out_{h_1}) =(\sum_o \delta_ow_{ho})\times out_{h_1}(1-out_{h_1})

因此整个梯度能够写成

\frac{\partial {E_{total}}}{\partial {w_1}}=\delta_{h_1}\times i_1

相关文章
相关标签/搜索