iOS底层原理:Runtime研究,玩出新花样

image.png

Objective-C 扩展了 C 语言,并加入了面向对象特性和 Smalltalk 式的消息传递机制。而这个扩展的核心是一个用 C 和 编译语言 写的 Runtime 库。它是 Objective-C 面向对象和动态机制的基石。html

Objective-C 是一个动态语言,这意味着它不只须要一个编译器,也须要一个运行时系统来动态得建立类和对象、进行消息传递和转发。理解 Objective-C 的 Runtime 机制能够帮咱们更好的了解这个语言,适当的时候还能对语言进行扩展,从系统层面解决项目中的一些设计或技术问题。一句话: 学好Runtime , iOS躺着走git

# Runtime Versions and Platforms

There are different versions of the Objective-C runtime on different platforms.

## Legacy and Modern Versions

There are two versions of the Objective-C runtime—“modern” and “legacy”. The modern version was introduced with Objective-C 2.0 and includes a number of new features. The programming interface for the legacy version of the runtime is described in *Objective-C 1 Runtime Reference*; the programming interface for the modern version of the runtime is described in *[Objective-C Runtime Reference](https://developer.apple.com/documentation/objectivec/objective_c_runtime)*.

The most notable new feature is that instance variables in the modern runtime are “non-fragile”: 

*   In the legacy runtime, if you change the layout of instance variables in a class, you must recompile classes that inherit from it.

*   In the modern runtime, if you change the layout of instance variables in a class, you do not have to recompile classes that inherit from it.

In addition, the modern runtime supports instance variable synthesis for declared properties (see [Declared Properties](https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html#//apple_ref/doc/uid/TP30001163-CH17) in *[The Objective-C Programming Language](https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html#//apple_ref/doc/uid/TP30001163)*).

## Platforms

iPhone applications and 64-bit programs on OS X v10.5 and later use the modern version of the runtime.

Other programs (32-bit programs on OS X desktop) use the legacy version of the runtime.

复制代码

Runtime其实有两个版本: “modern” 和 “legacy”。咱们如今用的 Objective-C 2.0 采用的是现行 (Modern) 版的 Runtime 系统,只能运行在 iOSmacOS 10.5 以后的 64 位程序中。而 macOS 较老的32位程序仍采用 Objective-C 1 中的(早期)Legacy 版本的 Runtime 系统。这两个版本最大的区别在于当你更改一个类的实例变量的布局时,在早期版本中你须要从新编译它的子类,而现行版就不须要。github

Runtime 基本是用 C汇编写的,可见苹果为了动态系统的高效而做出的努力。你能够在这里下到苹果维护的开源代码。苹果和GNU各自维护一个开源的 runtime/GNUStep 版本,这两个版本之间都在努力的保持一致。objective-c

平时的业务中主要是使用官方Api,解决咱们框架性的需求。编程

高级编程语言想要成为可执行文件须要先编译为汇编语言再汇编为机器语言,机器语言也是计算机可以识别的惟一语言,可是OC并不能直接编译为汇编语言,而是要先转写为纯C语言再进行编译和汇编的操做,从OCC语言的过渡就是由runtime来实现的。然而咱们使用OC进行面向对象开发,而C语言更多的是面向过程开发,这就须要将面向对象的类转变为面向过程的结构体。缓存

OK 咱们先来看看与runtime 交互的三种方式:bash

  • OC 原生底层就是runtime 会在后台执行 好比方法的实质就是消息 对于大多数状况下,OC运行时系统自动的在后台运行。你只需编写和编译OC代码就能使用它。 当你编译包含OC类和方法的代码时,编译器建立用来实现语言动态特性的数据结构体和方法调用。数据结构获取类和类定义的信息和协议中定义的信息,包含了在《The Objective-C Programming Language》中对“ Defining a Class and Protocols”谈论的类和协议的对象,以及方法选择,实例变量模版,和其余葱源代码中提取出来的信息。运行时主要的一个功能是发送消息,正如在Messaging 中的描述。它是由源代码的消息表达式调用的。数据结构

  • 经过调用NSObject的方法 间接调用runtimeapp

+ (BOOL)isSubclassOfClass:(Class)aClass;
+ (BOOL)instancesRespondToSelector:(SEL)aSelector;
+ (BOOL)conformsToProtocol:(Protocol *)protocol;
- (IMP)methodForSelector:(SEL)aSelector;
+ (IMP)instanceMethodForSelector:(SEL)aSelector;
- (void)doesNotRecognizeSelector:(SEL)aSelector;
- (BOOL)isKindOfClass:(Class)aClass;
- (BOOL)isMemberOfClass:(Class)aClass;
- (BOOL)conformsToProtocol:(Protocol *)aProtocol;
- (BOOL)respondsToSelector:(SEL)aSelector;

复制代码

这里给你们解释一下: 以上方法都是在运行时会编译成响应的方法:好比- (BOOL)respondsToSelector:(SEL)aSelector 咱们看编译会来到objc 的这里框架

BOOL class_respondsToSelector(Class cls, SEL sel)
{
    return class_respondsToSelector_inst(cls, sel, nil);
}

//继续跟踪 看到回来到下面的方法 ,会去查找当前sel 对应的imp是否存在
bool class_respondsToSelector_inst(Class cls, SEL sel, id inst)
{
    IMP imp;

    if (!sel  ||  !cls) return NO;

    // Avoids +initialize because it historically did so.
    // We're not returning a callable IMP anyway. imp = lookUpImpOrNil(cls, sel, inst, NO/*initialize*/, YES/*cache*/, YES/*resolver*/); return bool(imp); } //下面这里就是真正去查找imp的方法,我会在注重介绍一下 IMP lookUpImpOrNil(Class cls, SEL sel, id inst, bool initialize, bool cache, bool resolver) { IMP imp = lookUpImpOrForward(cls, sel, inst, initialize, cache, resolver); if (imp == _objc_msgForward_impcache) return nil; else return imp; } 复制代码

上面的两部跳动,都是给下面的方法作铺垫的,下面的方法也runtime很是重要的方法,下面咱们花点篇幅介绍一下

IMP lookUpImpOrForward(Class cls, SEL sel, id inst, 
                       bool initialize, bool cache, bool resolver)
{
    IMP imp = nil;
    bool triedResolver = NO;

    runtimeLock.assertUnlocked();

    // 若是cache是YES,则从缓存中查找IMP。
    if (cache) {
        // 经过cache_getImp函数查找IMP,查找到则返回IMP并结束调用
        imp = cache_getImp(cls, sel);
        if (imp) return imp;
    }

    runtimeLock.read();

    // 判断类是否已经被建立,若是没有被建立,则将类实例化
    if (!cls->isRealized()) {
        // Drop the read-lock and acquire the write-lock.
        // realizeClass() checks isRealized() again to prevent
        // a race while the lock is down.
        runtimeLock.unlockRead();
        runtimeLock.write();

        // 对类进行实例化操做
        realizeClass(cls);

        runtimeLock.unlockWrite();
        runtimeLock.read();
    }

    // 第一次调用当前类的话,执行initialize的代码
    if (initialize  &&  !cls->isInitialized()) {
        runtimeLock.unlockRead();
        // 对类进行初始化,并开辟内存空间
        _class_initialize (_class_getNonMetaClass(cls, inst));
        runtimeLock.read();
        // If sel == initialize, _class_initialize will send +initialize and 
        // then the messenger will send +initialize again after this 
        // procedure finishes. Of course, if this is not being called 
        // from the messenger then it won't happen. 2778172 } retry: runtimeLock.assertReading(); // 尝试获取这个类的缓存 imp = cache_getImp(cls, sel); if (imp) goto done; { // 若是没有从cache中查找到,则从方法列表中获取Method Method meth = getMethodNoSuper_nolock(cls, sel); if (meth) { // 若是获取到对应的Method,则加入缓存并从Method获取IMP log_and_fill_cache(cls, meth->imp, sel, inst, cls); imp = meth->imp; goto done; } } // Try superclass caches and method lists. { unsigned attempts = unreasonableClassCount(); // 循环获取这个类的缓存IMP 或 方法列表的IMP for (Class curClass = cls->superclass; curClass != nil; curClass = curClass->superclass) { // Halt if there is a cycle in the superclass chain. if (--attempts == 0) { _objc_fatal("Memory corruption in class list."); } // Superclass cache. // 获取父类缓存的IMP imp = cache_getImp(curClass, sel); if (imp) { if (imp != (IMP)_objc_msgForward_impcache) { // Found the method in a superclass. Cache it in this class. // 若是发现父类的方法,而且再也不缓存中,在下面的函数中缓存方法 log_and_fill_cache(cls, imp, sel, inst, curClass); goto done; } else { // Found a forward:: entry in a superclass. // Stop searching, but don't cache yet; call method 
                    // resolver for this class first.
                    break;
                }
            }

            // Superclass method list.
            // 在父类的方法列表中,获取method_t对象。若是找到则缓存查找到的IMP
            Method meth = getMethodNoSuper_nolock(curClass, sel);
            if (meth) {
                log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
                imp = meth->imp;
                goto done;
            }
        }
    }

    // No implementation found. Try method resolver once.

    // 若是没有找到,则尝试动态方法解析
    if (resolver  &&  !triedResolver) {
        runtimeLock.unlockRead();
        _class_resolveMethod(cls, sel, inst);
        runtimeLock.read();
        // Don't cache the result; we don't hold the lock so it may have 
        // changed already. Re-do the search from scratch instead.
        triedResolver = YES;
        goto retry;
    }

    // No implementation found, and method resolver didn't help. // Use forwarding. // 若是没有IMP被发现,而且动态方法解析也没有处理,则进入消息转发阶段 imp = (IMP)_objc_msgForward_impcache; cache_fill(cls, sel, imp, inst); done: runtimeLock.unlockRead(); return imp; } 复制代码

lookUpImpOrForward这个方法里面篇幅很长里面介绍了如下几点:

  • 若是cache是YES,则从缓存中查找IMP。这里也就是说咱们若是以前响应过的,在cache存过,就不须要下面的操做了
  • 判断类是否已经被建立,若是没有被建立,则将类实例化
  • 第一次调用当前类的话,执行initialize的代码
  • 尝试获取这个类的缓存 (这里不少小伙伴就会质疑,为何还要取一次内存,要知道OC是动态语言,在咱们执行这个获取imp的时候,外界在开锁,解锁的时候是能够访问的,动态操做)
  • 若是没有从cache中查找到,则从方法列表中获取Method
  • 若是尚未,就从父类缓存或者方法列表获取imp
  • 若是没有找到,则尝试动态方法解析
  • 若是没有IMP被发现,而且动态方法解析也没有处理,则进入消息转发阶段

里面还有关于runtimeLock运行时锁,这里加锁了read()对读取,其中runtimeLock是经过pthread_rwlock_t实现的,更加底层的,你们若是感兴趣锁能够参考这篇互斥锁-读写锁-条件锁

以上设计了消息,动态方法解析,还有消息转发,咱们在接下来的篇幅中还会更加深刻研究.咱们继续回来,第三种runtime交互

  • 直接调用runtimeAPI

根据本文章特意收集了一个教程 Runtime及时详解 须要的话能够关注公众号获取

相关文章
相关标签/搜索