Golang并发模型:轻松入门流水线FAN模式

前一篇文章《Golang并发模型:轻松入门流水线模型》,介绍了流水线模型的概念,这篇文章是流水线模型进阶,介绍FAN-IN和FAN-OUT,FAN模式可让咱们的流水线模型更好的利用Golang并发,提升软件性能。但FAN模式不必定是万能,不见得能提升程序的性能,甚至还不如普通的流水线。咱们先介绍下FAN模式,再看看它怎么提高性能的,它是否是万能的。git

这篇文章内容略多,原本打算分几回写的,但不如一次读完爽,因此干脆仍是放一篇文章了,要是时间不充足,利用好碎片时间,能够每次看1个标题的内容。github

FAN-IN和FAN-OUT模式

Golang的并发模式灵感来自现实世界,这些模式是通用的,毫无例外,FAN模式也是对当前世界的模仿。以汽车组装为例,汽车生产线上有个阶段是给小汽车装4个轮子,能够把这个阶段任务交给4我的同时去作,这4我的把轮子都装完后,再把汽车移动到生产线下一个阶段。这个过程当中,就有任务的分发,和任务结果的收集。其中任务分发是FAN-OUT,任务收集是FAN-IN。golang

  • FAN-OUT模式:多个goroutine从同一个通道读取数据,直到该通道关闭。OUT是一种张开的模式,因此又被称为扇出,能够用来分发任务。
  • FAN-IN模式:1个goroutine从多个通道读取数据,直到这些通道关闭。IN是一种收敛的模式,因此又被称为扇入,用来收集处理的结果。

fan-in和fan-out.png

FAN-IN和FAN-OUT实践

咱们此次试用FAN-OUT和FAN-IN,解决《Golang并发模型:轻松入门流水线模型》中提到的问题:计算一个整数切片中元素的平方值并把它打印出来。segmentfault

  • producer()保持不变,负责生产数据。
  • squre()也不变,负责计算平方值。
  • 修改main(),启动3个square,这3个squre从producer生成的通道读数据,这是FAN-OUT
  • 增长merge(),入参是3个square各自写数据的通道,给这3个通道分别启动1个协程,把数据写入到本身建立的通道,并返回该通道,这是FAN-IN

FAN模式流水线示例缓存

package main

import (
    "fmt"
    "sync"
)

func producer(nums ...int) <-chan int {
    out := make(chan int)
    go func() {
        defer close(out)
        for _, n := range nums {
            out <- i
        }
    }()
    return out
}

func square(inCh <-chan int) <-chan int {
    out := make(chan int)
    go func() {
        defer close(out)
        for n := range inCh {
            out <- n * n
        }
    }()

    return out
}

func merge(cs ...<-chan int) <-chan int {
    out := make(chan int)

    var wg sync.WaitGroup

    collect := func(in <-chan int) {
        defer wg.Done()
        for n := range in {
            out <- n
        }
    }

    wg.Add(len(cs))
    // FAN-IN
    for _, c := range cs {
        go collect(c)
    }

    // 错误方式:直接等待是bug,死锁,由于merge写了out,main却没有读
    // wg.Wait()
    // close(out)

    // 正确方式
    go func() {
        wg.Wait()
        close(out)
    }()

    return out
}

func main() {
    in := producer(1, 2, 3, 4)
    
    // FAN-OUT
    c1 := square(in)
    c2 := square(in)
    c3 := square(in)

    // consumer
    for ret := range merge(c1, c2, c3) {
        fmt.Printf("%3d ", ret)
    }
    fmt.Println()
}

3个squre协程并发运行,结果顺序是没法肯定的,因此你获得的结果,不必定与下面的相同。bash

➜  awesome git:(master) ✗ go run hi.go
  1   4  16   9

FAN模式真能提高性能吗?

相信你内心已经有了答案,能够的。咱们仍是使用老问题,对比一下简单的流水线和FAN模式的流水线,修改下代码,增长程序的执行时间:并发

  • produer()使用参数生成指定数量的数据。
  • square()增长阻塞操做,睡眠1s,模拟阶段的运行时间。
  • main()关闭对结果数据的打印,下降结果处理时的IO对FAN模式的对比。

普通流水线less

// hi_simple.go

package main

import (
    "fmt"
)

func producer(n int) <-chan int {
    out := make(chan int)
    go func() {
        defer close(out)
        for i := 0; i < n; i++ {
            out <- i
        }
    }()
    return out
}

func square(inCh <-chan int) <-chan int {
    out := make(chan int)
    go func() {
        defer close(out)
        for n := range inCh {
            out <- n * n
            // simulate
            time.Sleep(time.Second)
        }
    }()

    return out
}

func main() {
    in := producer(10)
    ch := square(in)

    // consumer
    for _ = range ch {
    }
}

使用FAN模式的流水线函数

// hi_fan.go
package main

import (
    "sync"
    "time"
)

func producer(n int) <-chan int {
    out := make(chan int)
    go func() {
        defer close(out)
        for i := 0; i < n; i++ {
            out <- i
        }
    }()
    return out
}

func square(inCh <-chan int) <-chan int {
    out := make(chan int)
    go func() {
        defer close(out)
        for n := range inCh {
            out <- n * n
            // simulate
            time.Sleep(time.Second)
        }
    }()

    return out
}

func merge(cs ...<-chan int) <-chan int {
    out := make(chan int)

    var wg sync.WaitGroup

    collect := func(in <-chan int) {
        defer wg.Done()
        for n := range in {
            out <- n
        }
    }

    wg.Add(len(cs))
    // FAN-IN
    for _, c := range cs {
        go collect(c)
    }

    // 错误方式:直接等待是bug,死锁,由于merge写了out,main却没有读
    // wg.Wait()
    // close(out)

    // 正确方式
    go func() {
        wg.Wait()
        close(out)
    }()

    return out
}

func main() {
    in := producer(10)

    // FAN-OUT
    c1 := square(in)
    c2 := square(in)
    c3 := square(in)

    // consumer
    for _ = range merge(c1, c2, c3) {
    }
}

屡次测试,每次结果近似,结果以下:高并发

  • FAN模式利用了7%的CPU,而普通流水线CPU只使用了3%,FAN模式可以更好的利用CPU,提供更好的并发,提升Golang程序的并发性能。
  • FAN模式耗时10s,普通流水线耗时4s。在协程比较费时时,FAN模式能够减小程序运行时间,一样的时间,能够处理更多的数据。
➜  awesome git:(master) ✗ time go run hi_simple.go
go run hi_simple.go  0.17s user 0.18s system 3% cpu 10.389 total
➜  awesome git:(master) ✗ 
➜  awesome git:(master) ✗ time go run hi_fan.go
go run hi_fan.go  0.17s user 0.16s system 7% cpu 4.288 total

也可使用Benchmark进行测试,看2个类型的执行时间,结论相同。为了节约篇幅,这里再也不介绍,方法和结果贴在Gist了,想看的朋友瞄一眼,或本身动手搞搞。

FAN模式必定能提高性能吗?

FAN模式能够提升并发的性能,那咱们是否是能够都使用FAN模式?

不行的,由于FAN模式不必定能提高性能。

依然使用以前的问题,再次修改下代码,其余不变:

  • squre()去掉耗时。
  • main()增长producer()的入参,让producer生产10,000,000个数据。

简单版流水线修改代码

// hi_simple.go

func square(inCh <-chan int) <-chan int {
    out := make(chan int)
    go func() {
        defer close(out)
        for n := range inCh {
            out <- n * n
        }
    }()

    return out
}

func main() {
    in := producer(10000000)
    ch := square(in)

    // consumer
    for _ = range ch {
    }
}

FAN模式流水线修改代码

// hi_fan.go
package main

import (
    "sync"
)

func square(inCh <-chan int) <-chan int {
    out := make(chan int)
    go func() {
        defer close(out)
        for n := range inCh {
            out <- n * n
        }
    }()

    return out
}

func main() {
    in := producer(10000000)

    // FAN-OUT
    c1 := square(in)
    c2 := square(in)
    c3 := square(in)

    // consumer
    for _ = range merge(c1, c2, c3) {
    }
}

结果,能够跑屡次,结果近似:

➜  awesome git:(master) ✗ time go run hi_simple.go    
go run hi_simple.go  9.96s user 5.93s system 168% cpu 9.424 total
➜  awesome git:(master) ✗ time go run hi_fan.go        
go run hi_fan.go  23.35s user 11.51s system 297% cpu 11.737 total

从这个结果,咱们能看到2点。

  • FAN模式能够提升CPU利用率。
  • FAN模式不必定能提高效率,下降程序运行时间。

优化FAN模式

既然FAN模式不必定能提升性能,如何优化?

不一样的场景优化不一样,要依具体的状况,解决程序的瓶颈。

咱们当前程序的瓶颈在FAN-IN,squre函数很快就完成,merge函数它把3个数据写入到1个通道的时候出现了瓶颈,适当使用带缓冲通道能够提升程序性能再修改下代码

  • merge()中的out修改成:

    out := make(chan int, 100)

结果:

➜  awesome git:(master) ✗ time go run hi_fan_buffered.go 
go run hi_fan_buffered.go  19.85s user 8.19s system 323% cpu 8.658 total

使用带缓存通道后,程序的性能有了较大提高,CPU利用率提升到323%,提高了8%,运行时间从11.7下降到8.6,下降了26%。

FAN模式的特色很简单,相信你已经掌握了,若是记不清了看这里,本文全部代码在该Github仓库

FAN模式颇有意思,而且能提升Golang并发的性能,若是想之后运用自如,用到本身的项目中去,仍是要写写本身的Demo,快去实践一把。

下一篇,写流水线中协程的“优雅退出”,欢迎关注。

完整示例代码

本文全部代码都在仓库,可查看完整示例代码:https://github.com/Shitaibin/...

并发系列文章推荐

  1. 若是这篇文章对你有帮助,请点个赞/喜欢,鼓励我持续分享,感谢。
  2. 个人文章列表,点此可查看
  3. 若是喜欢本文,随意转载,但请保留此原文连接

一块儿学Golang-分享有料的Go语言技术

相关文章
相关标签/搜索