完整代码传送门,见文章末尾html
传统 Synchronizdjava
package com.godfrey.demo01; /** * description : 模拟卖票 * * @author godfrey * @since 2020-05-14 */ public class SaleTicketDemo01 { public static void main(String[] args) { Ticket ticket = new Ticket(); new Thread(() -> { for (int i = 0; i < 60; i++) { ticket.sale(); } }, "A").start(); new Thread(() -> { for (int i = 0; i < 60; i++) { ticket.sale(); } }, "B").start(); new Thread(() -> { for (int i = 0; i < 60; i++) { ticket.sale(); } }, "C").start(); } } //资源类OOP class Ticket { private int number = 50; public synchronized void sale() { if (number > 0) { System.out.println(Thread.currentThread().getName() + "卖出了第" + (50 - (number--)) + "票,剩余:" + number); } } }
Synchronized(本质:队列+锁)和Lock区别git
Synchronized 是内置关键字,Lock 是一个Java类程序员
Synchronized 没法判断锁的状态,Lock 能够判断是否获取到了锁github
Synchronized 会自动释放锁,Lock 必须手动释放!若是不释放锁,死锁ajax
Synchronized 线程1(得到锁,阻塞)、线程2(等待,傻傻的等);Lock 锁就不必定会等待下去(tryLock)编程
Synchronized 可重入锁,不可中断,非公平;Lock 可重入锁 ,能够判断锁,非公平(能够本身设置);缓存
Synchronized 适合锁少许的代码同步问题,Lock 适合锁大量的同步代码!安全
锁是什么,如何判断锁的是谁多线程
Synchronized版生产者消费者问题
package proc; /** * description : 生产者消费者问题 * * @author godfrey * @since 2020-05-14 */ public class A { public static void main(String[] args) { Data data = new Data(); new Thread(() -> { for (int i = 0; i < 10; i++) { try { data.increment(); } catch (InterruptedException e) { e.printStackTrace(); } } }, "A").start(); new Thread(() -> { for (int i = 0; i < 10; i++) { try { data.decrement(); } catch (InterruptedException e) { e.printStackTrace(); } } }, "B").start(); } } // 判断等待,业务,通知 class Data { private int number = 0; //+1 public synchronized void increment() throws InterruptedException { if (number != 0) { //等待 this.wait(); } number++; System.out.println(Thread.currentThread().getName() + "==>" + number); //通知其余线程,我+1完毕了 this.notifyAll(); } //-1 public synchronized void decrement() throws InterruptedException { if (number == 0) { //等待 this.wait(); } number--; System.out.println(Thread.currentThread().getName() + "==>" + number); //通知其余线程,我-1完毕了 this.notifyAll(); } }
Lock接口
公平锁:十分公平:能够先来后到
非公平锁:十分不公平:能够插队 (默认)
package com.godfrey.demo01; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /** * description : 模拟卖票 * * @author godfrey * @since 2020-05-14 */ public class SaleTicketDemo02 { public static void main(String[] args) { Ticket ticket = new Ticket(); new Thread(() -> { for (int i = 0; i < 40; i++) ticket.sale(); }, "A").start(); new Thread(() -> { for (int i = 0; i < 40; i++) ticket.sale(); }, "B").start(); new Thread(() -> { for (int i = 0; i < 40; i++) ticket.sale(); }, "C").start(); } } //Lock class Ticket2 { private int number = 30; Lock lock = new ReentrantLock(); public synchronized void sale() { lock.lock(); try { if (number > 0) { System.out.println(Thread.currentThread().getName() + "卖出了第" + (50 - (number--)) + "票,剩余:" + number); } } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } }
问题存在,ABCD四个线程!怎么解决?
if ==>while
package com.godfrey.proc; /** * description : Synchronized版生成者消费者问题 * * @author godfrey * @since 2020-05-14 */ public class A { public static void main(String[] args) { Data data = new Data(); new Thread(() -> { for (int i = 0; i < 10; i++) { try { data.increment(); } catch (InterruptedException e) { e.printStackTrace(); } } }, "A").start(); new Thread(() -> { for (int i = 0; i < 10; i++) { try { data.increment(); } catch (InterruptedException e) { e.printStackTrace(); } } }, "B").start(); new Thread(() -> { for (int i = 0; i < 10; i++) { try { data.decrement(); } catch (InterruptedException e) { e.printStackTrace(); } } }, "C").start(); new Thread(() -> { for (int i = 0; i < 10; i++) { try { data.decrement(); } catch (InterruptedException e) { e.printStackTrace(); } } }, "D").start(); } } // 判断等待,业务,通知 class Data { private int number = 0; //+1 public synchronized void increment() throws InterruptedException { while (number != 0) { //等待 this.wait(); } number++; System.out.println(Thread.currentThread().getName() + "==>" + number); //通知其余线程,我+1完毕了 this.notifyAll(); } //-1 public synchronized void decrement() throws InterruptedException { while (number == 0) { //等待 this.wait(); } number--; System.out.println(Thread.currentThread().getName() + "==>" + number); //通知其余线程,我-1完毕了 this.notifyAll(); } }
JUC版的生产者和消费者问题
经过Lock
package com.godfrey.proc; /** * description : Lock版生产者消费者问题 * * @author godfrey * @since 2020-05-14 */ import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class B { public static void main(String[] args) { Data2 data = new Data2(); new Thread(() -> { for (int i = 0; i < 10; i++) { try { data.increment(); } catch (InterruptedException e) { e.printStackTrace(); } } }, "A").start(); new Thread(() -> { for (int i = 0; i < 10; i++) { try { data.increment(); } catch (InterruptedException e) { e.printStackTrace(); } } }, "B").start(); new Thread(() -> { for (int i = 0; i < 10; i++) { try { data.decrement(); } catch (InterruptedException e) { e.printStackTrace(); } } }, "C").start(); new Thread(() -> { for (int i = 0; i < 10; i++) { try { data.decrement(); } catch (InterruptedException e) { e.printStackTrace(); } } }, "D").start(); } } // 判断等待,业务,通知 class Data2 { private int number = 0; private Lock lock = new ReentrantLock(); private Condition condition = lock.newCondition(); //+1 public void increment() throws InterruptedException { lock.lock(); try { while (number != 0) { //等待 condition.await(); } number++; System.out.println(Thread.currentThread().getName() + "==>" + number); //通知其余线程,我+1完毕了 condition.signalAll(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } //-1 public void decrement() throws InterruptedException { lock.lock(); try { while (number == 0) { //等待 condition.await(); } number--; System.out.println(Thread.currentThread().getName() + "==>" + number); //通知其余线程,我-1完毕了 condition.signalAll(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } }
Condition的优点:精准通知和唤醒线程
.
package com.godfrey.proc; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /** * description : 按顺序执行 A->B->C * * @author godfrey * @since 2020-05-15 */ public class C { public static void main(String[] args) { Data3 data = new Data3(); new Thread(() -> { for (int i = 0; i < 10; i++) { data.printA(); } }, "A").start(); new Thread(() -> { for (int i = 0; i < 10; i++) { data.printB(); } }, "B").start(); new Thread(() -> { for (int i = 0; i < 10; i++) { data.printC(); } }, "C").start(); } } //资源类 class Data3 { private Lock lock = new ReentrantLock(); private Condition condition1 = lock.newCondition(); private Condition condition2 = lock.newCondition(); private Condition condition3 = lock.newCondition(); private int number = 1; //1A 2B 3C public void printA() { lock.lock(); try { //业务,判断->执行->通知 while (number != 1) { //等待 condition1.await(); } System.out.println(Thread.currentThread().getName() + "=>AAAAA"); //通知指定的人,B number = 2; condition2.signal(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public void printB() { lock.lock(); try { //业务,判断->执行->通知 while (number != 2) { //等待 condition2.await(); } System.out.println(Thread.currentThread().getName() + "=>BBBBB"); //通知指定的人,C number = 3; condition3.signal(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public void printC() { lock.lock(); try { //业务,判断->执行->通知 while (number != 3) { //等待 condition3.await(); } System.out.println(Thread.currentThread().getName() + "=>CCCCC"); //通知指定的人,C number = 1; condition1.signal(); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } }
package com.godfrey.lock8; import java.util.concurrent.TimeUnit; /** * description : 8锁:关于锁的8个问题 * 1.标准状况下 ,两个线程先打印发短信仍是打电话? 1/发短信 2/打电话 * 2.sendSms延时4秒 ,两个线程先打印发短信仍是打电话? 1/发短信 2/打电话 * * @author godfrey * @since 2020-05-15 */ public class Test1 { public static void main(String[] args) { Phone phone = new Phone(); new Thread(() -> { phone.sendSms(); }, "A").start(); try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } new Thread(() -> { phone.call(); }, "B").start(); } } class Phone { //synchronized 锁的对象是方法的调用者! public synchronized void sendSms() { try { TimeUnit.SECONDS.sleep(4); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("发短信"); } public synchronized void call() { System.out.println("打电话"); } }
package com.godfrey.lock8; import java.util.concurrent.TimeUnit; /** * description : 8锁:关于锁的8个问题 * 3.增长了一个普通方法后!先执行发短信仍是Hello? 普通方法 * 4.建立两个对象,!先执行发短信仍是打电话? 打电话 * * @author godfrey * @since 2020-05-15 */ public class Test2 { public static void main(String[] args) { //两个对象,两个调用者,两把锁 Phone2 phone1 = new Phone2(); Phone2 phone2 = new Phone2(); new Thread(() -> { phone1.sendSms(); }, "A").start(); try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } new Thread(() -> { //phone1.hello(); phone2.call(); }, "B").start(); } } class Phone2 { //synchronized 锁的对象是方法的调用者! public synchronized void sendSms() { try { TimeUnit.SECONDS.sleep(4); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("发短信"); } public synchronized void call() { System.out.println("打电话"); } //这里没有锁!不是同步方法,不受锁的影响 public void hello() { System.out.println("Hello"); } }
package com.godfrey.lock8; import java.util.concurrent.TimeUnit; /** * description : 8锁:关于锁的8个问题 * 5.增长两个静态的同步方法,只要一个对象,先打样发短信仍是打电话? 发短信 * 6.两个对象,增长两个静态的同步方法,只要一个对象,先打样发短信仍是打电话? 发短信 * * @author godfrey * @since 2020-05-15 */ public class Test3 { public static void main(String[] args) { //两个对象,两个调用者,两把锁 //static 静态方法 //类一加载就有了!锁的是class //Phone3 phone = new Phone3(); Phone3 phone1 = new Phone3(); Phone3 phone2 = new Phone3(); new Thread(() -> { //phone.sendSms(); phone1.sendSms(); }, "A").start(); try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } new Thread(() -> { phone2.call(); }, "B").start(); } } class Phone3 { //synchronized 锁的对象是方法的调用者! public static synchronized void sendSms() { try { TimeUnit.SECONDS.sleep(4); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("发短信"); } public static synchronized void call() { System.out.println("打电话"); } }
package com.godfrey.lock8; import java.util.concurrent.TimeUnit; /** * description : 8锁:关于锁的8个问题 * 7.一个静态同步方法一个普通方法,先打样发短信仍是打电话? 打电话 * 8.一个静态同步方法一个普通方法,两个对象,先打样发短信仍是打电话? 打电话 * * @author godfrey * @since 2020-05-15 */ public class Test4 { public static void main(String[] args) { //Phone4 phone = new Phone4(); Phone4 phone1 = new Phone4(); Phone4 phone2 = new Phone4(); new Thread(() -> { //phone.sendSms(); phone1.sendSms(); }, "A").start(); try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } new Thread(() -> { phone2.call(); }, "B").start(); } } class Phone4 { //静态同步方法,锁的对象是Class模板! public static synchronized void sendSms() { try { TimeUnit.SECONDS.sleep(4); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("发短信"); } //普通同步方法,锁的是调用者 public synchronized void call() { System.out.println("打电话"); } }
小结:看锁的是Class仍是对象,看是否同一个调用者
List不安全
package com.godfrey.unsafe; import java.util.*; import java.util.concurrent.CopyOnWriteArrayList; /** * description : java.util.ConcurrentModificationException 并发修改异常 * * @author godfrey * @since 2020-05-15 */ public class ListTest { public static void main(String[] args) { //并发下 ArrayList不安全的 /** * 解决方案: * 1.List<String> list = new Vector<>(); * 2.List<String> list = Collections.synchronizedList(new ArrayList<>()); * 3.List<String> list = new CopyOnWriteArrayList<>(); */ //CopyOnWrite 写入时复制COW 计算机程序设计 领域的一种优化策略 //多个线程调用的时候,list, 读取的时候,固定的,写入(覆盖) //在写入的时候避免覆盖,形成数据问题! //读写分离 //CopyOnWriteArrayList 比 Vector 牛逼在哪里?CopyOnWriteArrayList用Lock,Vector用Synchronized List<String> list = new CopyOnWriteArrayList<>(); for (int i = 0; i < 10; i++) { new Thread(() -> { list.add(UUID.randomUUID().toString().substring(0, 5)); System.out.println(list); }, String.valueOf(i)).start(); } } }
Set不安全
package com.godfrey.unsafe; import java.util.Set; import java.util.UUID; import java.util.concurrent.CopyOnWriteArraySet; /** * description : java.util.ConcurrentModificationException 并发修改异常 * * @author godfrey * @since 2020-05-15 */ public class SetTest { public static void main(String[] args) { //HashSet<String> set = new HashSet<>(); //并发下 HashSet不安全的 /** * 解决方案: * 1. Set<String> set = Collections.synchronizedSet(new HashSet<>()); * 2. Set<String> set = new CopyOnWriteArraySet<>(); */ Set<String> set = new CopyOnWriteArraySet<>(); for (int i = 0; i < 100; i++) { new Thread(() -> { set.add(UUID.randomUUID().toString().substring(0, 5)); System.out.println(set); }, String.valueOf(i)).start(); } } }
问:HashSet的底层是什么?
答:HashMap
public HashSet() { map = new HashMap<>(); } //add set的本质是map key public boolean add(E e) { return map.put(e, PRESENT)==null; } private static final Object PRESENT = new Object();
Map不安全
package com.godfrey.unsafe; import java.util.Map; import java.util.UUID; import java.util.concurrent.ConcurrentHashMap; /** * description : java.util.ConcurrentModificationException 并发修改异常 * * @author godfrey * @since 2020-05-15 */ public class MapTest { public static void main(String[] args) { // Map<String, String> map= new HashMap<>(); // 等价于 Map<String, String> map = new HashMap<>(16,0.75f);//加载因子,初始化容量 //并发下 HashMap不安全的 /** * 解决方案: * 1.Map<String, String> map = Collections.synchronizedMap(new HashMap<>()); * 2.Map<String, String> map = new ConcurrentHashMap<>(); */ Map<String, String> map = new ConcurrentHashMap<>(); for (int i = 0; i < 30; i++) { new Thread(() -> { map.put(Thread.currentThread().getName(), UUID.randomUUID().toString().substring(0, 5)); System.out.println(map); }, String.valueOf(i)).start(); } } }
代码测试
.
package com.godfrey.callable; import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.FutureTask; /** * description : Callable测试 * * @author godfrey * @since 2020-05-15 */ public class CallableTest { public static void main(String[] args) throws ExecutionException, InterruptedException { //new Thread(new Runnable).start(); //new Thread(new FutureTask<V>()).start(); //new Thread(new FutureTask<V>(Callable)).start(); MyThread thread = new MyThread(); FutureTask<Integer> futureTask = new FutureTask<Integer>(thread);//适配类 new Thread(futureTask, "A").start(); new Thread(futureTask, "B").start();//结果会被缓存,提升效率,最后打印只有一份 Integer integer = futureTask.get();//获取Callable的返回结果(get方法可能会产生阻塞【大数据等待返回结果慢】!把它放到最会,或者用异步通讯) System.out.println(integer); } } class MyThread implements Callable<Integer> { @Override public Integer call() { System.out.println("call()"); return 1024; } }
细节:
package com.godfrey.add; import java.util.concurrent.CountDownLatch; /** * description : 减法计数器 * * @author godfrey * @since 2020-05-15 */ public class CountDownLatchDemo { public static void main(String[] args) throws InterruptedException { //总数是6 CountDownLatch countDownLatch = new CountDownLatch(6); for (int i = 0; i < 6; i++) { new Thread(() -> { System.out.println(Thread.currentThread().getName() + "\tGo Out"); countDownLatch.countDown();//-1 }, String.valueOf(i)).start(); } countDownLatch.await();//等待计数器归零,而后再向下执行 System.out.println("Close Door"); } }
原理:
countDownLatch.countDown()
//数量-1
countDownLatch.await()
//等待计数器归零,而后再向下执行
每次有线程调用countDown()数量-1 , 假设计数器变为0 , countDownLatch.await()就会被唤醒,继续执行!
加法计数器
package com.godfrey.add; import java.util.concurrent.BrokenBarrierException; import java.util.concurrent.CyclicBarrier; /** * description : 加法计数器 * * @author godfrey * @since 2020-05-15 */ public class CyclicBarrierDemo { public static void main(String[] args) { /** * 集齐七颗龙珠召唤神龙 * 集齐龙珠的线程 */ CyclicBarrier cyclicBarrier = new CyclicBarrier(7, () -> { System.out.println("召唤神龙成功"); }); for (int i = 0; i < 7; i++) { final int temp = i;//lambda操做不到i new Thread(() -> { System.out.println(Thread.currentThread().getName() + "收集" + temp + "个龙珠"); try { cyclicBarrier.await();//等待 } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e) { e.printStackTrace(); } }, String.valueOf(i)).start(); } } }
Semaphore:信号量
抢车位!
package com.godfrey.add; import java.util.concurrent.Semaphore; import java.util.concurrent.TimeUnit; /** * description : 信号量 * * @author godfrey * @since 2020-05-15 */ public class SemaphoreDemo { public static void main(String[] args) { //线程数量:停车位! 限流! Semaphore semaphore = new Semaphore(3); for (int i = 0; i < 6; i++) { new Thread(() -> { //acquire() 获得 try { semaphore.acquire(); System.out.println(Thread.currentThread().getName() + "抢到车位"); TimeUnit.SECONDS.sleep(2); System.out.println(Thread.currentThread().getName() + "离开车位"); } catch (InterruptedException e) { e.printStackTrace(); } finally { //release() 释放 semaphore.release(); } }).start(); } } }
原理:
semaphore.acquire()
得到,假设若是已经满了, 等待,等待被释放为止!
semaphore.release()
释放,会将当前的信号量释放+ 1 ,而后喚醒等待的线程!
做用:
ReadWriteLock
package com.godfrey.rw; import java.util.HashMap; import java.util.Map; import java.util.concurrent.locks.ReentrantReadWriteLock; /** * description : 读写锁 * 独占锁(写锁) 一次只能被一个线程占有 * 共享锁(读锁) 多个线程能够同时占有 * ReadWriteLock * 读-读 能够共存! * 读-写 不能共存! * 写-写 不能共存! * * @author godfrey * @since 2020-05-15 */ public class ReadWriteLockDemo { public static void main(String[] args) { MyCacheLock myCache = new MyCacheLock(); //写入 for (int i = 0; i < 10; i++) { final int temp = i; new Thread(() -> { myCache.put(temp + "", temp + ""); }, String.valueOf(i)).start(); } //读取 for (int i = 0; i < 10; i++) { final int temp = i; new Thread(() -> { myCache.get(temp + ""); }, String.valueOf(i)).start(); } } } //加锁的 class MyCacheLock { private volatile Map<String, Object> map = new HashMap<>(); //读写锁,更加细粒度的控制 private ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock(); // 存,写入的时候,只但愿同时只有一个线程写 public void put(String key, Object value) { readWriteLock.writeLock().lock(); try { System.out.println(Thread.currentThread().getName() + "写入" + key); map.put(key, value); System.out.println(Thread.currentThread().getName() + "写入OK"); } catch (Exception e) { e.printStackTrace(); } finally { readWriteLock.writeLock().unlock(); } } // 取,读,全部人均可以 public void get(String key) { readWriteLock.readLock().lock(); try { System.out.println(Thread.currentThread().getName() + "读入" + key); Object o = map.get(key); System.out.println(Thread.currentThread().getName() + "读入OK"); } catch (Exception e) { e.printStackTrace(); } finally { readWriteLock.readLock().unlock(); } } } /** * 自定义缓存 */ class MyCache { private volatile Map<String, Object> map = new HashMap<>(); //存,写 public void put(String key, Object value) { System.out.println(Thread.currentThread().getName() + "写入" + key); map.put(key, value); System.out.println(Thread.currentThread().getName() + "写入OK"); } //取,读 public void get(String key) { System.out.println(Thread.currentThread().getName() + "读入" + key); Object o = map.get(key); System.out.println(Thread.currentThread().getName() + "读入OK"); } }
阻塞队列:
什么状况下咱们会使用 阻塞队列:多线程并发处理,线程池!
学会使用队列
添加、移除
四组API
方式 | 抛出异常 | 有返回值,不抛出异常 | 阻塞 等待 | 超时 |
---|---|---|---|---|
添加 | add | offer | put | offer |
移除 | remove | poll | take | poll |
判断队列的首部 | element | peek | - | - |
/** * 抛出异常 */ public static void test1() { ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3); System.out.println(blockingQueue.add("a")); System.out.println(blockingQueue.add("b")); System.out.println(blockingQueue.add("c")); //ava.lang.IllegalStateException: Queue full 抛出异常!队列已满 //System.out.println(blockingQueue.add("d")); System.out.println(blockingQueue.element());//查看队首元素是谁 System.out.println("==================="); System.out.println(blockingQueue.remove()); System.out.println(blockingQueue.remove()); System.out.println(blockingQueue.remove()); //java.lang.IllegalStateException: Queue full 抛出异常!队列为空 //System.out.println(blockingQueue.remove()); }
/** * 有返回值,没有异常 */ public static void test2() { ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3); System.out.println(blockingQueue.offer("a")); System.out.println(blockingQueue.offer("b")); System.out.println(blockingQueue.offer("c")); //System.out.println(blockingQueue.offer("d"));// false 不抛出异常! System.out.println(blockingQueue.peek());//查看队首元素是谁 System.out.println("==================="); System.out.println(blockingQueue.poll()); System.out.println(blockingQueue.poll()); System.out.println(blockingQueue.poll()); //System.out.println(blockingQueue.remove());// null 不抛出异常! }
/** * 等待,阻塞(一直阻塞) */ public static void test3() throws InterruptedException { // 队列的大小 ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3); // 一直阻塞 blockingQueue.put("a"); blockingQueue.put("b"); blockingQueue.put("c"); // blockingQueue.put("d"); // 队列没有位置了,一直阻塞 System.out.println(blockingQueue.take()); System.out.println(blockingQueue.take()); System.out.println(blockingQueue.take()); System.out.println(blockingQueue.take()); // 没有这个元素,一直阻塞 }
/** * 等待,阻塞(等待超市) */ public static void test4() throws InterruptedException { ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3); blockingQueue.offer("a"); blockingQueue.offer("b"); blockingQueue.offer("c"); // blockingQueue.offer("d",2,TimeUnit.SECONDS); // 等待超过2秒就退出 System.out.println("==============="); System.out.println(blockingQueue.poll()); System.out.println(blockingQueue.poll()); System.out.println(blockingQueue.poll()); blockingQueue.poll(2, TimeUnit.SECONDS); // 等待超过2秒就退出 }
SynchronousQueue 同步队列
没有容量,
进去一个元素,必须等待取出来以后,才能再往里面放一个元素!
put、take
package com.godfrey.bq; import java.util.concurrent.BlockingQueue; import java.util.concurrent.SynchronousQueue; import java.util.concurrent.TimeUnit; /** * description : * * @author godfrey * @since 2020-05-15 */ /** * 同步队列 * 和其余的BlockingQueue 不同, SynchronousQueue 不存储元素 * put了一个元素,必须从里面先take取出来,不然不能在put进去值! */ public class SynchronousQueueDemo { public static void main(String[] args) { BlockingQueue<String> blockingQueue = new SynchronousQueue<>(); // 同步队列 new Thread(() -> { try { blockingQueue.put("1"); System.out.println(Thread.currentThread().getName() + " put 1"); blockingQueue.put("2"); System.out.println(Thread.currentThread().getName() + " put 2"); blockingQueue.put("3"); System.out.println(Thread.currentThread().getName() + " put 3"); } catch (InterruptedException e) { e.printStackTrace(); } }, "T1").start(); new Thread(() -> { try { TimeUnit.SECONDS.sleep(3); System.out.println(Thread.currentThread().getName() + "=>" + blockingQueue.take()); TimeUnit.SECONDS.sleep(3); System.out.println(Thread.currentThread().getName() + "=>" + blockingQueue.take()); TimeUnit.SECONDS.sleep(3); System.out.println(Thread.currentThread().getName() + "=>" + blockingQueue.take()); } catch (InterruptedException e) { e.printStackTrace(); } }, "T2").start(); } }
线程池:三大方法、7大参数、4种拒绝策略
池话技术
程序的运行,本质:占用系统的资源! 优化资源的使用!=>池化技术
线程池、链接池、内存池、对象池///..... 建立、销毁。十分浪费资源
池化技术:事先准备好一些资源,有人要用,就来我这里拿,用完以后还给我
线程池的好处:
线程复用、能够控制最大并发数、管理线程
三大方法
package com.godfrey.pool; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; /** * description : Executors 工具类、3大方法 * * @author godfrey * @since 2020-05-15 */ public class Demo01 { public static void main(String[] args) { ExecutorService threadPool = Executors.newSingleThreadExecutor();// 单个线程 //ExecutorService threadPool = Executors.newFixedThreadPool(5);// 建立一个固定的线程池的大小 //ExecutorService threadPool = Executors.newCachedThreadPool();// 可伸缩的,遇强则强,遇弱则弱 try { for (int i = 0; i < 100; i++) { threadPool.execute(() -> { System.out.println(Thread.currentThread().getName() + "\tOK"); }); } } catch (Exception e) { e.printStackTrace(); } finally { // 线程池用完,程序结束,关闭线程池 threadPool.shutdown(); } } }
七大参数
源码分析:
public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); } //本质ThreadPoolExecutor() public ThreadPoolExecutor(int corePoolSize, // 核心线程池大小 int maximumPoolSize, // 最大核心线程池大小 long keepAliveTime, // 超时了没有人调用就会释放 TimeUnit unit, // 超时单位 BlockingQueue<Runnable> workQueue, // 阻塞队列 ThreadFactory threadFactory, // 线程工厂:建立线程的,通常不用动 RejectedExecutionHandler handler // 拒绝策略) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
手写一个线程池
package com.godfrey.pool; import java.util.concurrent.*; /** * description : 七大参数与四种拒绝策略 * 四种拒绝策略: * AbortPolicy(默认):队列满了,还有任务进来,不处理这个任务的,直接抛出 RejectedExecution异常! * CallerRunsPolicy:哪来的回哪里! * DiscardOldestPolicy:队列满了,抛弃队列中等待最久的任务,而后把当前任务加入队列中尝试再次提交 * DiscardPolicy():队列满了,直接丢弃任务,不予任何处理也不抛出异常.若是容许任务丢失,这是最好的拒绝策略! * * @author godfrey * @since 2020-05-15 */ public class Demo02 { public static void main(String[] args) { ExecutorService threadPool = new ThreadPoolExecutor( //模拟银行业务办理 2, //常驻核心线程数 办理业务窗口初始数量 5, //线程池可以容纳同时执行的最大线程数,此值大于等于1, 办理业务窗口最大数量 3, //多余的空闲线程存活时间,当空间时间达到keepAliveTime值时,多余的线程会被销毁直到只剩下corePoolSize个线程为止 释放后窗口数量会变为常驻核心数 TimeUnit.SECONDS, //超时单位 new LinkedBlockingDeque<>(3), //任务队列,被提交但还没有被执行的任务. 候客区座位数量 Executors.defaultThreadFactory(), //线程工厂:建立线程的,通常不用动 new ThreadPoolExecutor.DiscardOldestPolicy()); //拒绝策略,表示当线程队列满了而且工做线程大于等于线程池的最大显示 数(maxnumPoolSize)时如何来拒绝 try { for (int i = 0; i < 10; i++) { threadPool.execute(() -> { System.out.println(Thread.currentThread().getName() + "\tOK"); }); } } catch (Exception e) { e.printStackTrace(); } finally { // 线程池用完,程序结束,关闭线程池 threadPool.shutdown(); } } }
四种拒绝策略
小结和拓展
池的最大的大小如何去设置!
获取CPU核数System.out.println(Runtime.getRuntime().availableProcessors())
了解:用来(调优)
新时代的程序员:lambda表达式、链式编程、函数式接口、Stream流式计算
函数式接口:只有一个方法的接口
@FunctionalInterface public interface Runnable { public abstract void run(); }
.
代码测试
函数式接口
。
package com.godfrey.function; import java.util.function.Function; /** * description : Function 函数式接口,有一个输入参数,有一个输出 * 只要是 函数型接口 能够 用 lambda表达式简化 * * @author godfrey * @since 2020-05-16 */ public class Demo01 { public static void main(String[] args) { //Function function = new Function<String, String>(){ // @Override // public String apply(String o) { // return o; // } //}; Function function = str->{return str;}; System.out.println(function.apply("123")); } }
判定型接口:有一个输入参数,返回值只能是 布尔值!
.
package com.godfrey.function; import java.util.function.Predicate; /** * description : 判定型接口,有一个输入参数,返回值只能是布尔值! * * @author godfrey * @since 2020-05-16 */ public class Demo02 { public static void main(String[] args) { //判断字符串是否为空 //Predicate<String> predicate = new Predicate<String>() { // @Override // public boolean test(String str) { // return str.isEmpty(); // } //}; Predicate<String> predicate = str -> { return str.isEmpty(); }; System.out.println(predicate.test("")); } }
Consumer 消费型接口
.
package com.godfrey.function; import java.util.function.Consumer; /** * description : Consumer 消费型接口,只有输入,没有返回值 * * @author godfrey * @since 2020-05-16 */ public class Demo03 { public static void main(String[] args) { //Consumer<String> consumer = new Consumer<String>() { // @Override // public void accept(String str) { // System.out.println(str); // } //}; Consumer<String> consumer = str -> System.out.println(str); consumer.accept("godfrey"); } }
Supplier 供给型接口
.
package com.godfrey.function; import java.util.function.Supplier; /** * description : Supplier 供给型接口,没有参数,只有返回值 * * @author godfrey * @since 2020-05-16 */ public class Demo04 { public static void main(String[] args) { //Supplier supplier = new Supplier<Integer>() { // @Override // public Integer get() { // System.out.println("get()"); // return 1024; // } //}; Supplier supplier = () -> { return 1024;}; System.out.println(supplier.get()); } }
什么是Stream流式计算
大数据:存储 + 计算
集合、MySQL 本质就是存储东西的;
计算都应该交给流来操做!
.
package com.godfrey.stream; import java.util.Arrays; import java.util.List; /** * description :一分钟内完成此题,只能用一行代码实现! * 如今有5个用户!筛选: * 一、ID 必须是偶数 * 二、年龄必须大于23岁 * 三、用户名转为大写字母 * 四、用户名字母倒着排序 * 五、只输出一个用户! * * @author godfrey * @since 2020-05-16 */ public class Test { public static void main(String[] args) { User u1 = new User(1, "a", 21); User u2 = new User(2, "b", 22); User u3 = new User(3, "c", 23); User u4 = new User(4, "d", 24); User u5 = new User(6, "e", 25); //集合就算存储 List<User> list = Arrays.asList(u1, u2, u3, u4, u5); //计算交给Stream流 list.stream() .filter(u -> { return u.getId() % 2 == 0; }) .filter(u->{return u.getAge()>23;}) .map(u->{return u.getName().toUpperCase();}) .sorted((uu1,uu2)->{return uu2.compareTo(uu1);}) .limit(1) .forEach(System.out::println); } }
什么是 ForkJoin
ForkJoin 在 JDK 1.7 , 并行执行任务!提升效率。大数据量!
大数据:Map Reduce (把大任务拆分为小任务)
ForkJoin 特色:工做窃取
这个里面维护的都是双端队列
.
Forkjoin
.
package com.godfrey.forkjoin; import java.util.concurrent.RecursiveTask; /** * 求和计算的任务! * 如何使用 forkjoin * 一、forkjoinPool 经过它来执行 * 二、计算任务 forkjoinPool.execute(ForkJoinTask task) * 三、 计算类要继承 ForkJoinTask * * @author godfrey * @since 2020-05-16 */ public class ForkJoinDemo extends RecursiveTask<Long> { private Long start; private Long end; //临界值 private Long temp = 10000L; public ForkJoinDemo(Long start, Long end) { this.start = start; this.end = end; } //计算方法 @Override protected Long compute() { if ((end - start) > temp) { Long sum = 0L; for (Long i = start; i < end; i++) { sum += i; } return sum; } else { // forkjoin 递归 Long middle = (start + end) / 2;//中间值 ForkJoinDemo task1 = new ForkJoinDemo(start, middle); task1.fork(); // 拆分任务,把任务压入线程队列 ForkJoinDemo task2 = new ForkJoinDemo(middle + 1, end); task2.fork(); // 拆分任务,把任务压入线程队列 return task1.join() + task2.join(); } } }
测试:
package com.godfrey.forkjoin; import java.util.concurrent.ExecutionException; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.ForkJoinTask; import java.util.stream.LongStream; /** * description : 效率测试 * * @author godfrey * @since 2020-05-16 */ public class Test { public static void main(String[] args) throws ExecutionException, InterruptedException { //test1(); //sum=499999999500000000 时间:7192 //test2(); //sum=499999999500000000 时间:6949 test3(); //sum=500000000500000000 时间:526 } // 普通程序员 public static void test1() { Long sum = 0L; Long start = System.currentTimeMillis(); for (Long i = 0L; i < 10_0000_0000L; i++) { sum += i; } Long end = System.currentTimeMillis(); System.out.println("sum=" + sum + " 时间:" + (end - start)); } //ForkJoin public static void test2() throws ExecutionException, InterruptedException { Long start = System.currentTimeMillis(); ForkJoinPool forkJoinPool = new ForkJoinPool(); ForkJoinTask<Long> task = new ForkJoinDemo(0L, 10_0000_0000L); ForkJoinTask<Long> submit = forkJoinPool.submit(task); Long sum = submit.get(); Long end = System.currentTimeMillis(); System.out.println("sum=" + sum + " 时间:" + (end - start)); } //Stream并行流 public static void test3() { Long start = System.currentTimeMillis(); Long sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, Long::sum); Long end = System.currentTimeMillis(); System.out.println("sum=" + sum + " 时间:" + (end - start)); } }
Future 设计的初衷: 对未来的某个事件的结果进行建模
package com.godfrey.future; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; import java.util.concurrent.TimeUnit; /** * description : 异步回调 * * @author godfrey * @since 2020-05-16 */ public class Demo01 { public static void main(String[] args) throws ExecutionException, InterruptedException { //test1(); test02(); } // 没有返回值的 runAsync 异步回调 public static void test1() throws InterruptedException, ExecutionException { CompletableFuture<Void> completableFuture = CompletableFuture.runAsync(() -> { try { TimeUnit.SECONDS.sleep(2); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + "runAsync=>Void"); }); System.out.println("1111"); completableFuture.get(); // 获取阻塞执行结果 } // 有返回值的 supplyAsync 异步回调 // ajax,成功和失败的回调 // 返回的是错误信息; public static void test02() throws InterruptedException, ExecutionException { CompletableFuture<Integer> completableFuture = CompletableFuture.supplyAsync(() -> { System.out.println(Thread.currentThread().getName() + "supplyAsync=>Integer"); int i = 10 / 0; return 1024; }); System.out.println(completableFuture.whenComplete((t, u) -> { System.out.println("t=>" + t); // 正常的返回结果 System.out.println("u=>" + u); // 错误信息:java.util.concurrent.CompletionException:java.lang.ArithmeticException: / by zero }).exceptionally((e) -> { System.out.println(e.getMessage()); return 233; // 能够获取到错误的返回结果 }).get()); /** * succee Code 200 * error Code 404 500 */} }
请你谈谈你对 Volatile 的理解
Volatile 是 Java 虚拟机提供轻量级的同步机制
什么是JMM
JMM : Java内存模型,不存在的东西,概念!约定!
关于JMM的一些同步的约定:
线程 工做内存 、主内存
8种操做:
内存交互操做有8种,虚拟机实现必须保证每个操做都是原子的,不可再分的(对于double和long类
型的变量来讲,load、store、read和write操做在某些平台上容许例外)
JMM对这八种指令的使用,制定了以下规则:
1.保证可见性
package com.godfrey.tvolatile; import java.util.concurrent.TimeUnit; /** * description : volatile 保证可见性 * * @author godfrey * @since 2020-05-16 */ public class JMMDemo { // 不加 volatile 程序就会死循环! // 加 volatile 能够保证可见性 private volatile static int num = 0; public static void main(String[] args) { // main new Thread(() -> { // 线程 1 对主内存的变化不知道的 while (num == 0) { } }).start(); try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } num = 1; System.out.println(num); } }
2.不保证原子性
原子性 : 不可分割
线程A在执行任务的时候,不能被打扰的,也不能被分割。要么同时成功,要么同时失败
package com.godfrey.tvolatile; /** * description : volatile 不保证原子性 * * @author godfrey * @since 2020-05-16 */ public class JMMDemo { private volatile static int num = 0; public static void add() { num++; } public static void main(String[] args) { //理论上num结果应该为 2 万 for (int i = 0; i < 20; i++) { new Thread(() -> { for (int j = 0; j < 1000; j++) { add(); } }).start(); } while (Thread.activeCount() > 2) { // main gc Thread.yield(); } System.out.println(Thread.currentThread().getName() + " " + num); } }
若是不加 lock 和 synchronized ,怎么样保证原子性
使用原子类,解决原子性问题
.
package com.godfrey.tvolatile; import java.util.concurrent.atomic.AtomicInteger; /** * description : volatile 不保证原子性 * * @author godfrey * @since 2020-05-16 */ public class VDemo02 { // volatile 不保证原子性 // 原子类的 Integer private volatile static AtomicInteger num = new AtomicInteger(); public static void add() { // num++; // 不是一个原子性操做 num.getAndIncrement(); // AtomicInteger + 1 方法, CAS } public static void main(String[] args) { //理论上num结果应该为 2 万 for (int i = 0; i < 20; i++) { new Thread(() -> { for (int j = 0; j < 1000; j++) { add(); } }).start(); } while (Thread.activeCount() > 2) { // main gc Thread.yield(); } System.out.println(Thread.currentThread().getName() + " " + num); } }
这些类的底层都直接和操做系统挂钩!在内存中修改值!Unsafe类是一个很特殊的存在!
指令重排
什么是 指令重排:你写的程序,计算机并非按照你写的那样去执行的
源代码-->编译器优化的重排--> 指令并行也可能会重排--> 内存系统也会重排---> 执行
处理器在进行指令重排的时候,考虑:数据之间的依赖性!
int x = 1; // 1 int y = 2; // 2 x = x + 5; // 3 y = x * x; // 4 咱们所指望的:1234 可是可能执行的时候回变成 2134 1324 可不多是 4123!
可能形成影响的结果: a b x y 这四个值默认都是 0;
线程A | 线程B |
---|---|
x=a | y=b |
b=1 | a=2 |
正常的结果: x = 0;y = 0;可是可能因为指令重排
线程A | 线程B |
---|---|
b=1 | a=2 |
x=a | y=b |
指令重排致使的诡异结果: x = 2;y = 1;
禁止指令重排
volatile能够禁止指令重排:
内存屏障。CPU指令。做用:
.
Volatile 是能够保持 可见性。不能保证原子性,因为内存屏障,能够保证避免指令重排的现象产生!
饿汉式 DCL懒汉式,深究!
饿汉式
package com.godfrey.single; /** * description : 饿汉式单例 * * @author godfrey * @since 2020-05-16 */ public class Hungry { private Hungry() { } public final static Hungry HUNGRY = new Hungry(); public static Hungry getInstance() { return HUNGRY; } }
静态内部类
package com.godfrey.single; /** * description : 静态内部类单例 * * @author godfrey * @since 2020-05-16 */ public class Holder { private Holder() { } private static class InnerClass { private final static Holder HOLDER = new Holder(); } public static Holder getInstance() { return InnerClass.HOLDER; } }
单例不安全,反射
枚举
package com.godfrey.single; /** * description : 枚举单例 * * @author godfrey * @since 2020-05-16 */ public enum EnumSingle { INSTANCE; }
经过class文件反编译获得Java文件:
// Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov. // Jad home page: http://www.kpdus.com/jad.html // Decompiler options: packimports(3) // Source File Name: EnumSingle.java package com.godfrey.single; import java.io.PrintStream; public final class EnumSingle extends Enum { public static EnumSingle[] values() { return (EnumSingle[])$VALUES.clone(); } public static EnumSingle valueOf(String name) { return (EnumSingle)Enum.valueOf(com/godfrey/single/EnumSingle, name); } private EnumSingle(String s, int i) { super(s, i); } public static void main(String args[]) { System.out.println(INSTANCE); } public static final EnumSingle INSTANCE; private static final EnumSingle $VALUES[]; static { INSTANCE = new EnumSingle("INSTANCE", 0); $VALUES = (new EnumSingle[] { INSTANCE }); } }
能够发现枚举的单例构造器是有参的
什么是 CAS
package com.godfrey.cas; import java.util.concurrent.atomic.AtomicInteger; /** * description : CAS compareAndSet : 比较并交换 * * @author godfrey * @since 2020-05-16 */ public class CASDemo { public static void main(String[] args) { AtomicInteger atomicInteger = new AtomicInteger(2020); // 指望、更新 // public final boolean compareAndSet(int expectedValue, int newValue) // 若是我指望的值达到了,那么就更新,不然,就不更新, CAS 是CPU的并发原语! System.out.println(atomicInteger.compareAndSet(2020, 2021)); System.out.println(atomicInteger.get()); atomicInteger.getAndIncrement(); System.out.println(atomicInteger.compareAndSet(2020, 2021)); System.out.println(atomicInteger.get()); } }
Unsafe 类
CAS : 比较当前工做内存中的值和主内存中的值,若是这个值是指望的,那么则执行操做!若是不是就一直循环!
缺点:
CAS : ABA 问题(狸猫换太子)
package com.godfrey.cas; import java.util.concurrent.atomic.AtomicInteger; /** * description : CAS问题:ABA(狸猫换太子) * * @author godfrey * @since 2020-05-16 */ public class ABADemo { // CAS compareAndSet : 比较并交换! public static void main(String[] args) { AtomicInteger atomicInteger = new AtomicInteger(2020); // 指望、更新 // public final boolean compareAndSet(int expect, int update) // 若是我指望的值达到了,那么就更新,不然,就不更新, CAS 是CPU的并发原语! // ============== 捣乱的线程 ================== System.out.println(atomicInteger.compareAndSet(2020, 2021)); System.out.println(atomicInteger.get()); System.out.println(atomicInteger.compareAndSet(2021, 2020)); System.out.println(atomicInteger.get()); // ============== 指望的线程 ================== System.out.println(atomicInteger.compareAndSet(2020, 6666)); System.out.println(atomicInteger.get()); } }
解决ABA 问题,引入原子引用! 对应的思想:乐观锁
带版本号 的原子操做!
package com.godfrey.cas; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicStampedReference; /** * description : 原子引用解决ABA问题 * * @author godfrey * @since 2020-05-16 */ public class AtomicStampedReferenceDemo { //AtomicStampedReference 注意,若是泛型是一个包装类,注意对象的引用问题 static AtomicStampedReference<Integer> atomicStampedReference = new AtomicStampedReference<>(1, 1); public static void main(String[] args) { new Thread(() -> { int stamp = atomicStampedReference.getStamp(); // 得到版本号 System.out.println("a1=>" + stamp); try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } atomicStampedReference.compareAndSet(1, 2, atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1); System.out.println("a2=>" + atomicStampedReference.getStamp()); System.out.println(atomicStampedReference.compareAndSet(2, 1, atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1)); System.out.println("a3=>" + atomicStampedReference.getStamp()); }, "a").start(); // 乐观锁的原理相同! new Thread(() -> { int stamp = atomicStampedReference.getStamp(); // 得到版本号 System.out.println("b1=>" + stamp); try { TimeUnit.SECONDS.sleep(2); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(atomicStampedReference.compareAndSet(1, 6, stamp, stamp + 1)); System.out.println("b2=>" + atomicStampedReference.getStamp()); }, "b").start(); } }
注意:
Integer 使用了对象缓存机制,默认范围是 -128 ~ 127 ,推荐使用静态工厂方法 valueOf 获取对象实例,而不是 new,由于 valueOf 使用缓存,而 new 必定会建立新的对象分配新的内存空间;
公平锁: 很是公平, 不可以插队,必须先来后到!
非公平锁:很是不公平,能够插队 (默认都是非公平)
public ReentrantLock() { sync = new NonfairSync(); } public ReentrantLock(boolean fair) { sync = fair ? new FairSync() : new NonfairSync(); }
可重入锁(递归锁)
Synchronized
package com.godfrey.lock; /** * description : Synchronized * * @author godfrey * @since 2020-05-16 */ public class Demo01 { public static void main(String[] args) { Phone phone = new Phone(); new Thread(() -> { phone.sms(); }, "A").start(); new Thread(() -> { phone.sms(); }, "B").start(); } } class Phone { public synchronized void sms() { System.out.println(Thread.currentThread().getName() + "sms"); call(); // 这里也有锁 } public synchronized void call() { System.out.println(Thread.currentThread().getName() + "call"); } }
Lock 版
package com.godfrey.lock; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /** * description : * * @author godfrey * @since 2020-05-16 */ public class Demo02 { public static void main(String[] args) { Phone2 phone = new Phone2(); new Thread(() -> { phone.sms(); }, "A").start(); new Thread(() -> { phone.sms(); }, "B").start(); } } class Phone2 { Lock lock = new ReentrantLock(); public void sms() { lock.lock(); try { System.out.println(Thread.currentThread().getName() + "sms"); call(); // 这里也有锁 } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } public void call() { lock.lock(); try { System.out.println(Thread.currentThread().getName() + "call"); } catch (Exception e) { e.printStackTrace(); } finally { lock.unlock(); } } }
spinlock
咱们来自定义一个锁测试
package com.godfrey.lock; import java.util.concurrent.atomic.AtomicReference; /** * description : 自旋锁 * * @author godfrey * @since 2020-05-16 */ public class SpinlockDemo { AtomicReference<Thread> atomicReference = new AtomicReference<>(); // 加锁 public void myLock() { Thread thread = Thread.currentThread(); System.out.println(Thread.currentThread().getName() + "==> mylock"); // 自旋锁 while (!atomicReference.compareAndSet(null, thread)) { } } // 解锁 public void myUnLock() { Thread thread = Thread.currentThread(); System.out.println(Thread.currentThread().getName() + "==> myUnlock"); atomicReference.compareAndSet(thread, null); } }
测试
package com.godfrey.lock; import java.util.concurrent.TimeUnit; /** * description : 测试自定义CAS实现的自旋锁 * * @author godfrey * @since 2020-05-16 */ public class TestSpinLock { public static void main(String[] args) throws InterruptedException { // 底层使用的自旋锁CAS SpinlockDemo lock = new SpinlockDemo(); new Thread(() -> { lock.myLock(); try { TimeUnit.SECONDS.sleep(5); } catch (Exception e) { e.printStackTrace(); } finally { lock.myUnLock(); } }, "T1").start(); TimeUnit.SECONDS.sleep(1); new Thread(() -> { lock.myLock(); try { TimeUnit.SECONDS.sleep(1); } catch (Exception e) { e.printStackTrace(); } finally { lock.myUnLock(); } }, "T2").start(); } }
.
死锁是什么
死锁测试,怎么排除死锁:
package com.godfrey.lock; import java.util.concurrent.TimeUnit; /** * description : 死锁Demo * * @author godfrey * @since 2020-05-16 */ public class DeadLockDemo { public static void main(String[] args) { String lockA = "lockA"; String lockB = "lockB"; new Thread(new MyThread(lockA, lockB), "T1").start(); new Thread(new MyThread(lockB, lockA), "T2").start(); } } class MyThread implements Runnable { private String lockA; private String lockB; public MyThread(String lockA, String lockB) { this.lockA = lockA; this.lockB = lockB; } @Override public void run() { synchronized (lockA) { System.out.println(Thread.currentThread().getName() + "lock:" + lockA + "=>get" + lockB); try { TimeUnit.SECONDS.sleep(2); } catch (InterruptedException e) { e.printStackTrace(); } synchronized (lockB) { System.out.println(Thread.currentThread().getName() + "lock:" + lockB + "=>get" + lockA); } } } }
解决问题
jps -l
定位进程号jstack 进程号
找到死锁问题代码传送门: