二叉树

? 树(英语:tree)是一种抽象数据类型(ADT)或是实做这种抽象数据类型的数据结构,用来模拟具备树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具备层次关系的集合。把它叫作“树”是由于它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
? 它具备如下的特色:
○ 每一个节点有零个或多个子节点;
○ 没有父节点的节点称为根节点;
○ 每个非根节点有且只有一个父节点;
○ 除了根节点外,每一个子节点能够分为多个不相交的子树;
? 树的术语
? 节点的度:一个节点含有的子树的个数称为该节点的度;
? 树的度:一棵树中,最大的节点的度称为树的度;
? 叶节点或终端节点:度为零的节点;
? 父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
? 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
? 兄弟节点:具备相同父节点的节点互称为兄弟节点;
? 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
? 树的高度或深度:树中节点的最大层次;
? 堂兄弟节点:父节点在同一层的节点互为堂兄弟;
? 节点的祖先:从根到该节点所经分支上的全部节点;
? 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
? 森林:由m(m>0)棵互不相交的树的集合称为森林;
? 树的种类
? 无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
? 有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
○ 二叉树:每一个节点最多含有两个子树的树称为二叉树;(重点讲解)
§ 彻底二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层全部节点从左向右连续地紧密排列,这样的二叉树被称为彻底二叉树,其中满二叉树的定义是全部叶节点都在最底层的彻底二叉树;
§ 平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
§ 排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树);
○ 霍夫曼树(用于信息编码):带权路径最短的二叉树称为霍夫曼树或最优二叉树
○ B树:一种对读写操做进行优化的自平衡的二叉查找树,可以保持数据有序,拥有多余两个子树
? 常见树的应用场景
? 1. xml,html等,那么编写这些东西的解析器的时候,不可避免用到树
? 2. 路由协议就是使用了树的算法
? 3. mysql数据库索引(B+树)
? 4. 文件系统的目录结构
? 5. 不少经典的AI算法其实都是树搜索
? 二叉树
? 二叉(杈)树是每一个节点最多有两个子树的树结构。一般子树被称做“左子树”(left subtree)和“右子树”(right subtree)
? 二叉树又能够细分出“彻底二叉树”和“满二叉树”两种特殊形态
○ 彻底二叉树
§ 若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,而且叶子结点都是从左到右依次排布,这就是彻底二叉树。
○ 满二叉树
§ 除了叶结点外每个结点都有左右子叶且叶子结点都处在最底层的二叉树。
? 二叉树的遍历
? 树的遍历是树的一种重要的运算。所谓遍历是指对树中全部结点的信息的访问,即依次对树中每一个结点访问一次且仅访问一次,咱们把这种对全部节点的访问称为遍历(traversal)。
? 树的两种重要的遍历模式是
○ 深度优先遍历
○ 先序遍历(preorder),
○ 中序遍历(inorder)和
○ 后序遍历(postorder)
○ 广度优先遍历
○ 层次遍历
从树的root开始,从上到下从从左到右遍历整个树的节点html

相关文章
相关标签/搜索