import matplotlib.pyplot as plt import numpy as np import cv2 %matplotlib inline
首先读入此次须要使用的图像python
img = cv2.imread('apple.jpg',0) #直接读为灰度图像 plt.imshow(img,cmap="gray") plt.axis("off") plt.show()
使用numpy带的fft库完成从频率域到空间域的转换。app
f = np.fft.fft2(img) fshift = np.fft.fftshift(f)
低通滤波器的公式以下
\[ H(u,v)= \begin{cases} 1, & \text{if $D(u,v)$ } \leq D_{0}\\ 0, & \text{if $D(u,v)$} \geq D_{0} \end{cases} \]
其中\(D(u,v)\)为频率域上\((u,v)\)点到中心的距离,\(D_0\)由本身设置
白点就是所容许经过的频率范围
3d图像以下
ui
咱们先把苹果转化成频率域看下效果spa
#取绝对值:将复数变化成实数 #取对数的目的为了将数据变化到0-255 s1 = np.log(np.abs(fshift)) plt.subplot(121),plt.imshow(s1,'gray') plt.title('Frequency Domain') plt.show()
matplotlib对于不是uint8的图像会自动把图像的数值缩放到0-255上,更多能够查看对该问题的讨论3d
咱们在频率域上试着取不一样的\(d_0\)再将其反变换到空间域看下效果code
def make_transform_matrix(d,image): transfor_matrix = np.zeros(image.shape) center_point = tuple(map(lambda x:(x-1)/2,s1.shape)) for i in range(transfor_matrix.shape[0]): for j in range(transfor_matrix.shape[1]): def cal_distance(pa,pb): from math import sqrt dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2) return dis dis = cal_distance(center_point,(i,j)) if dis <= d: transfor_matrix[i,j]=1 else: transfor_matrix[i,j]=0 return transfor_matrix d_1 = make_transform_matrix(10,fshift) d_2 = make_transform_matrix(30,fshift) d_3 = make_transform_matrix(50,fshift)
设定距离分别为10,30,50其经过的频率的范围如图orm
plt.subplot(131) plt.axis("off") plt.imshow(d_1,cmap="gray") plt.title('D_1 10') plt.subplot(132) plt.axis("off") plt.title('D_2 30') plt.imshow(d_2,cmap="gray") plt.subplot(133) plt.axis("off") plt.title("D_3 50") plt.imshow(d_3,cmap="gray") plt.show()
img_d1 = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_1))) img_d2 = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_2))) img_d3 = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_3))) plt.subplot(131) plt.axis("off") plt.imshow(img_d1,cmap="gray") plt.title('D_1 10') plt.subplot(132) plt.axis("off") plt.title('D_2 30') plt.imshow(img_d2,cmap="gray") plt.subplot(133) plt.axis("off") plt.title("D_3 50") plt.imshow(img_d3,cmap="gray") plt.show()
讲上面过程整理获得频率域低通滤波器的代码以下blog
def lowPassFilter(image,d): f = np.fft.fft2(image) fshift = np.fft.fftshift(f) def make_transform_matrix(d): transfor_matrix = np.zeros(image.shape) center_point = tuple(map(lambda x:(x-1)/2,s1.shape)) for i in range(transfor_matrix.shape[0]): for j in range(transfor_matrix.shape[1]): def cal_distance(pa,pb): from math import sqrt dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2) return dis dis = cal_distance(center_point,(i,j)) if dis <= d: transfor_matrix[i,j]=1 else: transfor_matrix[i,j]=0 return transfor_matrix d_matrix = make_transform_matrix(d) new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_matrix))) return new_img
plt.imshow(lowPassFilter(img,60),cmap="gray")
高通滤波器同低通滤波器很是相似,只不过两者经过的波正好是相反的
\[ H(u,v)= \begin{cases} 0, & \text{if $D(u,v)$ } \leq D_{0}\\ 1, & \text{if $D(u,v)$} \geq D_{0} \end{cases} \]
get
def highPassFilter(image,d): f = np.fft.fft2(image) fshift = np.fft.fftshift(f) def make_transform_matrix(d): transfor_matrix = np.zeros(image.shape) center_point = tuple(map(lambda x:(x-1)/2,s1.shape)) for i in range(transfor_matrix.shape[0]): for j in range(transfor_matrix.shape[1]): def cal_distance(pa,pb): from math import sqrt dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2) return dis dis = cal_distance(center_point,(i,j)) if dis <= d: transfor_matrix[i,j]=0 else: transfor_matrix[i,j]=1 return transfor_matrix d_matrix = make_transform_matrix(d) new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_matrix))) return new_img
img_d1 = highPassFilter(img,10) img_d2 = highPassFilter(img,30) img_d3 = highPassFilter(img,50) plt.subplot(131) plt.axis("off") plt.imshow(img_d1,cmap="gray") plt.title('D_1 10') plt.subplot(132) plt.axis("off") plt.title('D_2 30') plt.imshow(img_d2,cmap="gray") plt.subplot(133) plt.axis("off") plt.title("D_3 50") plt.imshow(img_d3,cmap="gray") plt.show()
显然当\(D_0=10\)时,苹果的边缘最清楚it
import imagefilter
thread_img = imagefilter.RobertsAlogrithm(img) laplace_img = imagefilter.LaplaceAlogrithm(img,"fourfields") mean_img = cv2.blur(img,(3,3)) plt.subplot(131) plt.imshow(thread_img,cmap="gray") plt.title("ThreadImage") plt.axis("off") plt.subplot(132) plt.imshow(laplace_img,cmap="gray") plt.axis("off") plt.title("LaplaceImage") plt.subplot(133) plt.imshow(mean_img,cmap="gray") plt.title("meanImage") plt.axis("off") plt.show()
空间域上的平均滤波和低通滤波同样,只要起去掉无关信息,平滑图像的做用。
Roberts,Laplace等滤波则起的提取边缘的做用。
频率域高斯高通滤波器的公式以下
\[ H(u,v) = 1-e^{\dfrac{-D^2(u,v)}{2D_0^2}} \]
def GaussianHighFilter(image,d): f = np.fft.fft2(image) fshift = np.fft.fftshift(f) def make_transform_matrix(d): transfor_matrix = np.zeros(image.shape) center_point = tuple(map(lambda x:(x-1)/2,s1.shape)) for i in range(transfor_matrix.shape[0]): for j in range(transfor_matrix.shape[1]): def cal_distance(pa,pb): from math import sqrt dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2) return dis dis = cal_distance(center_point,(i,j)) transfor_matrix[i,j] = 1-np.exp(-(dis**2)/(2*(d**2))) return transfor_matrix d_matrix = make_transform_matrix(d) new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_matrix))) return new_img
使用高斯滤波器d分别为10,30,50实现的效果
img_d1 = GaussianHighFilter(img,10) img_d2 = GaussianHighFilter(img,30) img_d3 = GaussianHighFilter(img,50) plt.subplot(131) plt.axis("off") plt.imshow(img_d1,cmap="gray") plt.title('D_1 10') plt.subplot(132) plt.axis("off") plt.title('D_2 30') plt.imshow(img_d2,cmap="gray") plt.subplot(133) plt.axis("off") plt.title("D_3 50") plt.imshow(img_d3,cmap="gray") plt.show()
频率域高斯低通滤波器的公式以下
\[ H(u,v) = e^{\dfrac{-D^2(u,v)}{2D_0^2}} \]
def GaussianLowFilter(image,d): f = np.fft.fft2(image) fshift = np.fft.fftshift(f) def make_transform_matrix(d): transfor_matrix = np.zeros(image.shape) center_point = tuple(map(lambda x:(x-1)/2,s1.shape)) for i in range(transfor_matrix.shape[0]): for j in range(transfor_matrix.shape[1]): def cal_distance(pa,pb): from math import sqrt dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2) return dis dis = cal_distance(center_point,(i,j)) transfor_matrix[i,j] = np.exp(-(dis**2)/(2*(d**2))) return transfor_matrix d_matrix = make_transform_matrix(d) new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_matrix))) return new_img
img_d1 = GaussianLowFilter(img,10) img_d2 = GaussianLowFilter(img,30) img_d3 = GaussianLowFilter(img,50) plt.subplot(131) plt.axis("off") plt.imshow(img_d1,cmap="gray") plt.title('D_1 10') plt.subplot(132) plt.axis("off") plt.title('D_2 30') plt.imshow(img_d2,cmap="gray") plt.subplot(133) plt.axis("off") plt.title("D_3 50") plt.imshow(img_d3,cmap="gray") plt.show()
一般空间域使用高斯滤波来平滑图像,在上一篇已经写过,直接使用上篇文章的代码。
def GaussianOperator(roi): GaussianKernel = np.array([[1,2,1],[2,4,2],[1,2,1]]) result = np.sum(roi*GaussianKernel/16) return result def GaussianSmooth(image): new_image = np.zeros(image.shape) image = cv2.copyMakeBorder(image,1,1,1,1,cv2.BORDER_DEFAULT) for i in range(1,image.shape[0]-1): for j in range(1,image.shape[1]-1): new_image[i-1,j-1] =GaussianOperator(image[i-1:i+2,j-1:j+2]) return new_image.astype(np.uint8) new_apple = GaussianSmooth(img) plt.subplot(121) plt.axis("off") plt.title("origin image") plt.imshow(img,cmap="gray") plt.subplot(122) plt.axis("off") plt.title("Gaussian image") plt.imshow(img,cmap="gray") plt.subplot(122) plt.axis("off") plt.show()
不管是低通滤波器,高通滤波器都是粗暴的一刀切,正如以前那么多空间域的滤波器同样,咱们但愿它经过的频率和与中心线性相关。
\[ h(u,v) = \frac{1} {{1+(D_0 / D(u,v))}^{2n}} \]
def butterworthPassFilter(image,d,n): f = np.fft.fft2(image) fshift = np.fft.fftshift(f) def make_transform_matrix(d): transfor_matrix = np.zeros(image.shape) center_point = tuple(map(lambda x:(x-1)/2,s1.shape)) for i in range(transfor_matrix.shape[0]): for j in range(transfor_matrix.shape[1]): def cal_distance(pa,pb): from math import sqrt dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2) return dis dis = cal_distance(center_point,(i,j)) transfor_matrix[i,j] = 1/((1+(d/dis))**n) return transfor_matrix d_matrix = make_transform_matrix(d) new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_matrix))) return new_img
plt.subplot(231) butter_100_1 = butterworthPassFilter(img,100,1) plt.imshow(butter_100_1,cmap="gray") plt.title("d=100,n=1") plt.axis("off") plt.subplot(232) butter_100_2 = butterworthPassFilter(img,100,2) plt.imshow(butter_100_2,cmap="gray") plt.title("d=100,n=2") plt.axis("off") plt.subplot(233) butter_100_3 = butterworthPassFilter(img,100,3) plt.imshow(butter_100_3,cmap="gray") plt.title("d=100,n=3") plt.axis("off") plt.subplot(234) butter_100_1 = butterworthPassFilter(img,30,1) plt.imshow(butter_100_1,cmap="gray") plt.title("d=30,n=1") plt.axis("off") plt.subplot(235) butter_100_2 = butterworthPassFilter(img,30,2) plt.imshow(butter_100_2,cmap="gray") plt.title("d=30,n=2") plt.axis("off") plt.subplot(236) butter_100_3 = butterworthPassFilter(img,30,3) plt.imshow(butter_100_3,cmap="gray") plt.title("d=30,n=3") plt.axis("off") plt.show()
能够明显的观察出过大的n形成的振铃现象
butter_5_1 = butterworthPassFilter(img,5,1) plt.imshow(butter_5_1,cmap="gray") plt.title("d=5,n=3") plt.axis("off") plt.show()