【小猪佩奇漫画】| 复杂度分析原来那么简单!

一、数据结构是用来干吗的?

数据结构与算法的诞生是让计算机「执行的更快」、「更省空间」的。前端

二、用什么来评判数据结构与算法的好坏?

从「执行时间」和「占用空间」两个方面来评判数据结构与算法的好坏。web

三、什么是复杂度?

用「时间复杂度」和「空间复杂度」来描述性能问题,二者统称为复杂度。算法

四、复杂度描述了什么?

复杂度描述的是算法执行时间(或占用空间)与数据规模的增加关系。编程

一、和性能分析相比有什么优势?

辅助度分析有不依赖执行环境、成本低、效率高、易操做、指导性强的特色。数组

二、为何要复杂度分析?

复杂度描述的是算法执行时间(或占用空间)与数据规模的增加关系。bash

一、什么方法能够进行复杂度分析?

方法:「大 O 表示法」数据结构

二、什么是大 O 表示法?

算法的「执行时间」与每行代码的「执行次数」成正比【T(n) = O(f(n)) 】=》其中T(n)表示算法执行总时间,f(n)表示每行代码执行总次数,而n每每表示数据的规模。性能

三、大 O 表示法的特色?

因为时间复杂度描述的是算法执行时间与数据规模的增加变化趋势,常量阶、低阶以及系数实际上对这种增加趋势不产决定性影响,因此在作时间复杂度分析时忽略这些项。ui

四、复杂度分析法则
  • [单段代码看频率]:看代码片断中「循环代码」的时间复杂度。spa

  • [多段代码看最大]:若是多个 for 循环,看「嵌套循环最多」的那段代码的时间复杂度。

  • [嵌套代码求乘积]:循环、递归代码,将内外嵌套代码求乘积去时间复杂度。

  • [多个规模求加法]: 法有两个参数控制两个循环的次数,那么这时就取两者复杂度相加。

时间复杂度

一、什么是复杂度?

全部代码的「执行时间 T(n)」 与每行代码的「执行次数n」 成正比【T(n) = O(f(n)) 】。

#####二、分析的三个方法 ■ 最多法则

忽略掉公式中的常量、低阶、系数,取最大循环次数就能够了,也就是循环次数最多的那行代码。

▍Example

1 // 求n个数字之和
2 int xiaolu(int n) {
3   int sum = 0;
4   for (int i = 1; i <= n; ++i) {
5     sum = sum + i;
6   }
7   return sum;
8 }
复制代码

▍分析 第二行是一行代码,也就是常量级别,与 n 没有关系,能够忽略,4、五行代码是咱们重点分析对象,与 n 有关,时间复杂度就是反映执行时间和 n 数据规模的关系。求 n 个数据之和须要执行 n 次。因此时间复杂度为 O(n)。

■ 加法法则

总复杂度等于循环次数最多的那段复杂度。

▍Example

1 int xiaolu(int n) {
 2   int sum = 0;
 3   //循环一
 4   for (int i = 1; i <= 100; j++) {
 5     sum = sum + i;
 6   }
 7   //循环二
 8   for (int j = 1; j <= n; j++) {
 9      sum = sum + i;
10   }
11 }
复制代码

▍分析 上边有两个循环,一个循环 100 次,另外一个循环 n 次,咱们选择循环次数最多的那一个且和「数据规模 n 」相关的循环。由上可知,咱们很容易选出循环二,即和数据规模 n 有关,循环次数最多,循环次数最多的那段代码时间复杂度就表明整体的时间复杂度,为 O(n) ;

■ 乘法法则

当咱们遇到嵌套的 for 循环的时候,怎么计算时间复杂度呢?那就是内外循环的乘积。

▍Example

1 for (int j = 1; j <= n; j++) {
2     for(int i = 1; i <= n; i++)
3     sum = sum + i;
4 }
复制代码

▍分析 外循环一次,内就循环 n 次,那么外循环 n 次,内就循环 n*n 次。因此时间复杂为 O(n²)。

空间复杂度

一、什么是空间复杂度?

表示算法的「存储空间」与「数据规模」之间的增加关

▍Example

int i = 0;
  int[] a = new int[n];
  for (i; i <n; ++i) {
    a[i] = i * i;
  }
复制代码

▍分析 在全部代码中,咱们很容易寻找到存储空间相关的代码,就是第二行,申请了一个 n 大小的存储空间,因此空间复杂度为 O(n)。

二、最多见的空间复杂度

O(1)、O(n)、O(n²)。

■ O(1)

常量级的时间复杂度表示方法,不管是一行代码,仍是多行,只要是常量级的就用 O(1) 表示。

▍Example

1 int i = 1;
2 int j = 2;
3 int sum = i + j;
复制代码

▍分析 由于这三行代码,也就是常量级别的代码不随 n 数据规模的改变而改变。(循环、递归除外)

■ O(logn) | O(nlogn)

「对数阶时间复杂度」,最难分析的一种时间复杂度。

▍Example

1 i=1;
2 while (i <= n)  {
3   i = i * 3;
4 }
复制代码

▍分析 要求这段代码的时间复杂度就求这段代码执行了多少次,看下图具体分析。

image.png

▍补充 不论是以 2 为底、以 3 为底,仍是以 10 为底,能够把全部对数阶的时间复杂度都记为 O(logn),由于对数之间能够转换的,参照高中课本。

■ O(m+n) | O(m*n)

参照上边讲到的加法和乘法法则。

一、最好、最坏时间复杂度

所谓的最好、最坏时间复杂度分别对应代码最好的状况和最坏的状况下的执行。

▍Example

1 //在一个 array 数组中查找一个数据 a 是否存在
2for (int i = 1; i < n; i++) {
3    if (array[i] == a) {
4       return i;
5    }
6 }
复制代码

▍分析 ① 最好状况就是数组的第一个就是咱们要查找的数据,上边代码之执行一遍就能够,这种状况下的时间复杂度为最好时间复杂度,为 O(1)。

② 最坏的状况就是数组的最后一个才是咱们要查找的数据,须要循环遍历 n 遍数组,也就对应最坏的时间复杂度为 O(n)

二、平均时间复杂度

平均时间复杂度须要借助几率论的知识去分析,也就是咱们几率论中所说的加权平均值,也叫作指望值。

▍分析 好比上方的例子,假设咱们查找的数据在数组中的几率为 1/2;出如今数组中的几率为 n/1,根据下边的公式就能够算出出现的几率为 1/2n

而后咱们再把每种状况考虑进去,就能够计算出平均时间复杂度。

■ 几种复杂度性能对比

公众号:一个不甘平凡的码农

公众号:一个不甘平凡的码农

记录了三本学渣从 0 到 1 的编程故事,是一个致力于原创「数据结构与算法」之美的「web 前端」 技术号。

公众号回复 “葵花宝典” 便可领取小鹿收藏的自学资料。

一个专一于数据结构与算法之美的前端号
相关文章
相关标签/搜索