Flink对批处理和流处理,提供了统一的上层API
Table API是一套内嵌在java和scala语言中的查询api,它容许以很是直观的方式组合来自一些关系运算符的查询
Flink的sql支持基于实现了sql标准的Apache calcitejava
先来个栗子感觉下: sql
在pom.xml中加入依赖apache
<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner_2.12</artifactId> <version>1.10.1</version> </dependency> <!-- 也能够不用引入下面的包,由于上面已经包含了--> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-api-scala-bridge_2.12</artifactId> <version>1.10.1</version> </dependency>
在tabletest包下建一个Example object:api
package com.mafei.apitest.tabletest import com.mafei.sinktest.SensorReadingTest5 import org.apache.flink.streaming.api.scala._ import org.apache.flink.table.api.Table import org.apache.flink.table.api.scala._ object Example { def main(args: Array[String]): Unit = { //建立执行环境 val env = StreamExecutionEnvironment.getExecutionEnvironment env.getConfig.setAutoWatermarkInterval(200) //直接全局设置watermark的时间为200毫秒 val inputStream = env.readTextFile("/opt/java2020_study/maven/flink1/src/main/resources/sensor.txt") env.setParallelism(1) //先转换成样例类类型 val dataStream = inputStream .map(data => { val arr = data.split(",") //按照,分割数据,获取结果 SensorReadingTest5(arr(0), arr(1).toLong, arr(2).toDouble) //生成一个传感器类的数据,参数中传toLong和toDouble是由于默认分割后是字符串类别 }) //首先建立表执行环境 val tableEnv = StreamTableEnvironment.create(env) //基于流建立一张表 val dataTable: Table = tableEnv.fromDataStream(dataStream) //调用table api进行转换 val resultTable = dataTable .select("id, temperature") .filter("id == 'sensor3'") resultTable.toAppendStream[(String,Double)].print("result") //第二种,直接写sql来实现 tableEnv.createTemporaryView("table1", dataTable) val sql: String = "select id, temperature from table1 where id='sensor1'" val resultSqlTable = tableEnv.sqlQuery(sql) resultSqlTable.toAppendStream[(String, Double)].print("result sql") env.execute("table api example") } }
看到效果以后再来分析结构:
Table API和SQL的程序结构,与流式处理的程序结构十分相似maven
//建立表执行环境 val tableEnv = StreamTableEnvironment.create(StreamExecutionEnvironment.getExecutionEnvironment) //建立一张表,用于读取数据 tableEnv.connect(....).createTemporayTable("inputTable") //注册一张表,用于把计算结果输出 tableEnv.connect(....).createTemporaryTable("outputTable") //经过Table API查询算子,获得一张结果表 val result = tableEnv.from("inputTable").select() //经过sql查询语句,获得一张表 val sqlResult = tableEnv.sqlQuery("select id, temperature from table1 where id='sensor1'") //将结果表写入到输出表中 result.insertInto("outputTable")
Flink SQL有好几种实现方式,其中blink 是阿里内部使用后来开源合并到flink的引擎,来看看几种使用方式ide
/** * * @author mafei * @date 2020/11/22 */ package com.mafei.apitest.tabletest import org.apache.flink.api.scala.ExecutionEnvironment import org.apache.flink.streaming.api.scala._ import org.apache.flink.table.api.{EnvironmentSettings, TableEnvironment} import org.apache.flink.table.api.scala._ object TableApi1 { def main(args: Array[String]): Unit = { //1 、建立环境 val env = StreamExecutionEnvironment.getExecutionEnvironment env.setParallelism(1) val tableEnv = StreamTableEnvironment.create(env) //1,1 基于老版本的planner的流处理 val settings = EnvironmentSettings.newInstance() .useOldPlanner() .inStreamingMode() .build() val oldStreamTableEnv = StreamTableEnvironment.create(env, settings) //1.2 基于老版本的批处理环境 val batchEnv = ExecutionEnvironment.getExecutionEnvironment val oldBatchTableEnv = BatchTableEnvironment.create(batchEnv) //1.3基于blink planner的流处理 val blinkStreamSettings = EnvironmentSettings.newInstance() .useBlinkPlanner() .inStreamingMode() .build() val blinkStreamTableEnv = StreamTableEnvironment.create(env, blinkStreamSettings) //基于blink planner的批处理 val blinkBatchSettings = EnvironmentSettings.newInstance() .useBlinkPlanner() .inBatchMode() .build() val blinkBatchTableEnv = TableEnvironment.create(blinkBatchSettings) } }