Nvidia驱动安装
转载 https://blog.csdn.net/stories_untold/article/details/78521925python
一、查看显卡信息linux
$ lspci | grep VGA
二、下载驱动程序: http://www.nvidia.cn/Download/index.aspx 好比个人是 gtx1050tiwindows
下载完以后是一个名称为 NVIDIA-Linux-x86_64-xxx.xx.run 的文件。bash
三、 删除原有驱动session
$ sudo apt-get remove --purge nvidia*
四、禁用nouveau驱动:url
编辑 /etc/modprobe.d/blacklist-nouveau.conf 文件,添加如下内容:spa
blacklist nouveau blacklist lbm-nouveau options nouveau modeset=0 alias nouveau off alias lbm-nouveau off
而后保存。 关闭nouveau:.net
$ echo options nouveau modeset=0 | sudo tee -a /etc/modprobe.d/nouveau-kms.conf
五、 重启:翻译
$ update-initramfs -u $ sudo reboot
六、获取Kernel source(很是重要):3d
$ sudo apt install linux-source $ sudo apt install linux-headers-x.x.x-x-generic
图中红色部分中的版本号就是第二步中x.x.x-x须要替换的部分。
七、安装Nvidia驱动
$ sudo sh ./NVIDIA-Linux-x86_64-xxx.xx.run
这里要着重说一下 网上的教程都是先把gcc和g++的版本先替换掉了,我发现直接用sudo apt install nvidia-340
装上驱动仍是挂载不了,因此推荐直接卸载了直接重装。 这里编译驱动须要gcc7版本, 因此用4.8版本的话会报错。因此先不用替换,而且用 gcc -v 检查一下是否安装,版本是不是7版本
是否卸载原有驱动安装新驱动 -> 是
大概意思是没有获取到预安装脚本(猜的),是否继续 -> 是
尝试翻译了一下,翻译处理我看不懂 -> 否
后面还有一个问你是否安装32位的, -> 否
Would you like to run the nvidia-xconfigutility to automatically update your x configuration so that the NVIDIA x driver will be used when you restart x? Any pre-existing x confile will be backed up. -> 是
八、挂载Nvidia驱动:
$ modprobe nvidia
九、检查驱动是否安装成功:
$ nvidia-smi
安装 CUDA
一、下载cuda
https://developer.nvidia.com/cuda-toolkit-archive
深绿色的所有选中,下面的内容所有下载, 后面的主要是补丁文件 另外有人纠结版本问题, 说网上各类教程都是好多版本的, 我装最新的版本会不会有什么问题? 我我的的见解是,只要官方出补丁了,就直接上手用,基本上不会有什么问题。 可是好比像python这种极度依赖包的语言的话,就不能直接上最新,通常上最新的版本减一个小版本就好了。 好比如今最新的3.7 不少包不能兼容, 可是我用3.6.6就不会有问题
二、下载cuDNN
https://developer.nvidia.com/rdp/cudnn-archive 这个要注意一下, 要下载明确说明可以兼容下载的cuda的版本 好比个人是9.2 那么我就要下载对应的最新的版本
注意: 这个须要登录以后才能下载
三、gcc降级
$ sudo apt-get install gcc-4.8 $ sudo apt-get install g++-4.8 $ cd /usr/bin $ sudo mv gcc gcc.bak #备份 $ sudo ln -s gcc-4.8 gcc # 从新链接 $ sudo mv g++ g++.bak $ sudo ln -s g++-4.8 g++
查看版本号
$ gcc -v $ g++ -v
均显示gcc version 4.8 ,说明gcc 4.8安装成功。
四、安装cuda ,及其补丁
$ sudo bash cuda_9.2.148_396.37_linux.run
这里有一个小技巧, 它会出现一个协议,而后按回车键才能不断的往下面走。刚开始的时候,由于驱动配置得不会, 拖了十屡次,每次都至少半分钟, 着实把我给恶心着了。 后面无心中发现一个直接关的办法, 就是直接按 ctrl+c
这里面在询问是否安装驱动的时候选否,其余的都选y或者回车就能够
后面继续安装补丁
$ sudo bash cuda_9.2.148.1_linux.run
安装完毕以后,将如下两条加入.barshrc文件中.注意,须要把cuda-9.2替换成安装的版本号
export PATH=/usr/local/cuda-9.2/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-9.2/lib64:${LD_LIBRARY_PATH:+:${LD_LIBRA$
五、安装cuDNN
这个简单,直接解压以后复制到对应的包就行
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include 注意,解压后的文件夹名称为cuda ,将对应文件复制到 /usr/local中的cuda内 $ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 $ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
安装 Anaconda 并 安装tensorflow-gpu+keras-gpu及Gpu vs Cpu验证
一、下载Anaconda
https://www.anaconda.com/download/ 这里有两个版本选择, 取决于项目版本,这个开始搜这份资料的都是老司机, 我就不细说了
二、安装
bash Anaconda3-4.2.0-Linux-x86_64.sh
这里我忘了截图了, 网上详细安装的教程不少,去搜索一下就好了 http://www.javashuo.com/article/p-rfllkfga-hx.html
三、添加清华镜像 安装好以后添加一下国内源
$ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ $ conda config --set show_channel_urls yes
四、建立虚拟环境
conda create -n tensorflow-gpu python=3.6 source activate tensorflow-gpu #(linux下+source, windows下无需+source)
五、安装包
conda install tensorflow-gpu conda install keras-gpu
必定要加上-gpu,不然系统会默认成cpu
六、 验证
将下面代码保存到一个py文件中
import tensorflow as tf # Creates a graph. a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Runs the op. print(sess.run(c))
当执行的结果图示位置位GPU的时候, 那么环境就所有搭建完成了