用python的matplotlib和numpy库绘制股票K线均线的整合效果(含从网络接口爬取数据和验证交易策略代码)

    本人最近在尝试着发表“以股票案例入门Python编程语言”系列的文章,在这些文章里,将用Python工具绘制各类股票指标,在讲述各股票指标的含义以及计算方式的同时,验证基于各类指标的交易策略,本文是第一篇,经过K线和均线案例讲述Numpy,Maplotlib等相关库的用法,而且还用代码案例来验证买卖的交易策略。在本系列的后面文章中,将陆续经过python绘制成交量、KDJ、MACD、RSI和OBV等指标,并且还会用Python编写针对这些指标的交易策略,敬请关注。python

1 K线整合均线的案例

    均线也叫移动平均线(Moving Average,简称MA),是指某段时间内的平均股价(或指数)连成的曲线,经过它咱们能清晰地看到股价的历史波动,从而能进一步预测将来价格的发展趋势。编程

    均线通常分短时间、中期和长期这三类。编程语言

    1 一般把5天和10天移动平均线称为短时间均线,通常供短线投资者参照。工具

    2通常把20天、30天和60天移动平均线做为中期均线,通常供中线投资者参考。code

    3 通常120天和250天(甚至更长)移动平均线称为长期均线,通常供长线投资者参考。对象

    不过在实践中,咱们通常须要综合地观察短时间中期和长期均线,从中能分析出市场的多空趋势。好比,若是某股价格的三类均线均上涨,且短时间中期长期均线是从上到下排列,则说明该股价格趋势向上;反之若是并列下跌,且长期中期短时间均线从上到下排列,则说明股价趋势向下。blog

    讲完概念了,咱们经过rolling方法绘制均线。    索引

1	#!/usr/bin/env python
2	#coding=utf-8
3	import pandas as pd
4	import matplotlib.pyplot as plt 
5	from mpl_finance import candlestick_ochl  
6	#从文件里获得数据
7	df = pd.read_csv('D:/stockData/ch6/600895.csv',encoding='gbk')
8	#设置图的位置
9	fig = plt.figure()
10	ax = fig.subplot(111)
11	#调用方法,绘制K线图 
12	candlestick_ochl(opens=df["Open"].values, closes=df["Close"].values, highs=df["High"].values, lows=df["Low"].values,width=0.75, colorup='red', colordown='green')
13	df['Close'].rolling(window=3).mean().plot(color="red",label='3天均线')
14	df['Close'].rolling(window=5).mean().plot(color="blue",label='5天均线')
15	df['Close'].rolling(window=10).mean().plot(color="green",label='10天均线')
16	plt.legend(loc='best') #绘制图例
17	#设置x轴的标签 
18	plt.xticks(range(len(df.index.values)),df.index.values,rotation=30 ) 
19	ax.grid(True) #带网格线
20	plt.title("600895张江高科的K线图")
21	plt.show()

    从第13行到第15行里,经过rolling方法,根据天天的收盘价,计算了3天、5天和10天均线,并为每种均线设置了图例,在第16行里,经过legend方法设置了图例的位置。上述代码的运行效果以下图所示,从中咱们不只能看到这段时间内的K线图,还能看到3根均线。    接口

    

2 K线整合均线的改进版案例

    在本例中,咱们将作以下两点改进,其中请你们着重观察操做坐标轴的ax对象。  ip

    第一,为了更灵活地获得股市数据,这里是根据开始时间和结束时间,先是调用get_data_yahoo接口,从yahoo的接口里获取股票数据,同时为了留一份数据,因此会把从接口爬取到的数据保存到本地csv文件,作完以后再绘制图形。

    第二,在以前的案例中,x轴的刻度是每一个交易日的日期,但若是显示的时间范围过长,那么时间刻度就会太密集,影响美观效果,因此这里将只显示主刻度。改进后的代码以下所示。

1	#!/usr/bin/env python
2	#coding=utf-8
3	import pandas_datareader
4	import pandas as pd
5	import matplotlib.pyplot as plt 
6	from mpl_finance import candlestick2_ochl
7	from matplotlib.ticker import MultipleLocator 
8	#根据指定代码和时间范围,获取股票数据
9	code='600895.ss'
10	stock = pandas_datareader.get_data_yahoo(code,'2019-01-01','2019-03-31')
11	#删除最后一行,由于get_data_yahoo会多取一天数据
12	stock.drop(stock.index[len(stock)-1],inplace=True)
13	#保存在本地
14	stock.to_csv('D:\\stockData\ch7\\600895.csv')
15	df = pd.read_csv('D:/stockData/ch7/600895.csv',encoding='gbk',index_col=0)
16	#设置窗口大小
17	fig, ax = plt.subplots(figsize=(10, 8))
18	xmajorLocator   = MultipleLocator(5) #将x轴主刻度设置为5的倍数
19	ax.xaxis.set_major_locator(xmajorLocator)
20	#调用方法,绘制K线图 
21	candlestick2_ochl(ax = ax, 
22	opens=df["Open"].values,closes=df["Close"].values, highs=df["High"].values, lows=df["Low"].values,width=0.75, colorup='red', colordown='green')
23	#以下是绘制3种均线
24	df['Close'].rolling(window=3).mean().plot(color="red",label='3天均线')
25	df['Close'].rolling(window=5).mean().plot(color="blue",label='5天均线')
26	df['Close'].rolling(window=10).mean().plot(color="green",label='10天均线')
27	plt.legend(loc='best') #绘制图例
28	ax.grid(True) #带网格线
29	plt.title("600895张江高科的K线图")
30	plt.rcParams['font.sans-serif']=['SimHei']
31	plt.setp(plt.gca().get_xticklabels(), rotation=30) 
32	plt.show()

    相比以前代码,这段代码有四个改进点。

    第一,从第9行到第14行里,咱们经过第五章分析过的get_data_yahoo方法,传入股票代码、开始和结束时间这三个参数,从yahoo接口里得到股票交易的数据。

    请注意该方法返回的数据会比传入的结束时间多一天,好比咱们传入的结束时间是2019-03-31,但它会返回后一天(即2019-04-01)的数据,因此得经过第12行的drop方法,删除stock对象(该对象类型是dataframe)最后一行的数据。删除的时候是经过stock.index[len(stock)-1]指定删除长度减1的索引值,由于索引值是从0开始,并且须要指定inplace=True,不然的话,删除的结果没法更新到stock这个dataframe里。

    第二,在第17行里,经过figsize方法设置了窗口的大小尺寸。

    第三,经过第18行和第19行的代码,设置了主刻度是5的倍数。之因此设置成5的倍数,是由于通常一周的交易日是5天。但这里不能简单地把主刻度设置成每周一,由于某些周一有多是股市休市的法定假日。

    第四,因为无需在x轴上设置天天的日期,因此这里无需再调用plt.xticks方法,可是得调用如第31行所示的代码,设置x轴刻度的旋转角度,不然x轴展现的时间依然有可能会重叠。

    这段代码的运行效果以下图所示,从中你们能看到改进后的效果,并且,因为本次展现的股票时间段变长了(是3个月),因此相比drawKAndMA.py案例,均线的效果更为明显,尤为是三日均线,更是几乎贯穿于整个交易日范围。

    

3 葛兰碧均线八大买卖法则

   在均线实践理论中,投资专家葛兰碧创造的八项买卖法则可谓经典,具体的细节以下图所示。

    

    1 移动平均线从降低逐渐转为平水平,且有超上方抬头迹象,而股价从均线下方突破时,为买进信号,如上图中的A点。

    2 股价于移动平均线之上运行时下跌,但未跌破均线,此时股价再次上扬,此时为买入信号,如图中的C点。

    3 股价位于均线上运行,下跌时破均线,但均线呈上升趋势,不久股价回到均线之上时,为买进信号,如图中的B点。

    4 股价在均线下方运行时大跌,远离均线时向均线靠近,此时为买进时机,如图中的D点。

    5 均线的上升趋势逐渐变平,且有向下迹象,而股价从均线上方向下穿均线,为卖出信号,如图中的E点。

    6 股价向上穿过均线,不过均线依然保持下跌趋势,此后股价又下跌回均线下方,为卖出信号,如图中的F点。

    7 股价运行在均线下方,出现上涨,但未过均线就再次下跌,此为卖出点,如图中的G点。

    8 股价在均线的上方运行,连续上涨且继续远离均线,这种趋势说明随时会出现获利回吐的卖盘打压,此时是卖出的时机,如前图中的H点。

4 经过DataFrame对象验证均线的买点策略

    根据上述八大买卖原则,咱们在张江高科2019年1月到3月的交易数据内,用pandas库里的dataframe等对象,根据5日均线计算参考买点,代码以下所示。    

1	#!/usr/bin/env python
2	#coding=utf-8
3	import pandas as pd
4	#从文件里获得数据
5	df = pd.read_csv('D:/stockData/ch7/600895.csv',encoding='gbk')
6	maIntervalList = [3,5,10]
7	#虽然在后文里只用到了5日均线,但这里演示设置3种均线
8	for maInterval in maIntervalList:
9	    df['MA_' + str(maInterval)] = df['Close'].rolling(window=maInterval).mean()
10	cnt=0    
11	while cnt<=len(df)-1:
12	    try:
13	        #规则1,收盘价连续三天上扬
14	        if df.iloc[cnt]['Close']<df.iloc[cnt+1]['Close'] and df.iloc[cnt+1]['Close']<df.iloc[cnt+2]['Close']:
15	            #规则2,5日均线连续三天上扬
16	            if df.iloc[cnt]['MA_5']<df.iloc[cnt+1]['MA_5'] and df.iloc[cnt+1]['MA_5']<df.iloc[cnt+2]['MA_5']:
17	                #规则3,第3天,收盘价上穿5日均线
18	                if df.iloc[cnt+1]['MA_5']>df.iloc[cnt]['Close'] and df.iloc[cnt+2]['MA_5']<df.iloc[cnt+1]['Close']:     
19	                    print("Buy Point on:" + df.iloc[cnt]['Date'])
20	    except: #有几天是没5日均线的,因此用except处理异常
21	        pass:                
22	    cnt=cnt+1

    虽然在计算参考买点时,只用到了5日均价,但在第8行和第9行的for循环里,咱们经过rolling方法,仍是计算了3日、5日和10日的均价,并把计算后的结果记录到当前行的MA_三、MA_5和MA_10这三列中,这样作的目的是为了演示动态建立列的作法。

    在第11行到第22行的while循环里,咱们依次遍历了天天的交易数据,并在第14行,第16行和第18行里,经过三个if语句,设置了3个规则。因为在前几天是没有5日均价了,且在遍历最后2天交易数据时,在执行诸如df.iloc[cnt+2]['Close']的语句中会出现索引越界,因此在while循环里咱们用到了try…except异常处理语句。

    运行上述代码,咱们能看到的结果是:Buy Point on:2019-03-08,结合上图,咱们能看到3月8日以后的交易日里,股价有必定程度的上涨,因此能证明基于均线的“买”原则,但影响股价的因素太多,你们应全面分析,切勿在实战中只用这原则来买卖股票。

5 经过DataFrame验证均线的卖点策略

    一样地,根据5日均线计算参考买点,在以下案例中,咱们计算了张江高科2019年1月到3月内的卖点。    

1	#!/usr/bin/env python
2	#coding=utf-8
3	import pandas as pd
4	#从文件里获得数据
5	df = pd.read_csv('D:/stockData/ch7/600895.csv',encoding='gbk')
6	maIntervalList = [3,5,10]
7	#虽然在后文里只用到了5日均线,但这里演示设置3种均线
8	for maInterval in maIntervalList:
9	    df['MA_' + str(maInterval)] = df['Close'].rolling(window=maInterval).mean()
10	cnt=0    
11	while cnt<=len(df)-1:
12	    try:
13	        #规则1,收盘价连续三天下跌
14	        if df.iloc[cnt]['Close']>df.iloc[cnt+1]['Close'] and df.iloc[cnt+1]['Close']>df.iloc[cnt+2]['Close']:
15	            #规则2,5日均线连续三天下跌
16	            if df.iloc[cnt]['MA_5']>df.iloc[cnt+1]['MA_5'] and df.iloc[cnt+1]['MA_5']>df.iloc[cnt+2]['MA_5']:
17	                #规则3,第3天,收盘价下穿5日均线
18	                if df.iloc[cnt+1]['MA_5']<df.iloc[cnt]['Close'] and df.iloc[cnt+2]['MA_5']>df.iloc[cnt+1]['Close']:     
19	                    print("Sell Point on:" + df.iloc[cnt]['Date'])
20	    except: #有几天是没5日均线的,因此用except处理异常
21	        pass                
22	    cnt=cnt+1

    运行后,咱们能获得两个卖点:2019-01-23和2019-01-23,这一样能在上图描述的K线图里获得验证。

6 求推荐,后文预告与版权说明

    在本系列的后面文章中,将陆续经过python绘制成交量、KDJ、MACD、RSI和OBV等指标,并且还会用Python编写针对这些指标的交易策略,敬请关注。

    本文用了我将近3个小时,若是你们感受好,请帮忙推荐下。

    关于转载有以下的说明。

    1 本文文字和代码均属原创,可转载,但谢绝用于商业用户。

    2 转载时请用连接的方式,给出原文出处,同时写明原做者是hsm_computer。

    3 在转载时,请原文转载 ,如要在转载修改本文,请事先告知,谢绝在转载时经过修改本文达到有利于转载者的目的。

相关文章
相关标签/搜索