满二叉树的三种周游方法之算法

二叉树的三种周游,先序,中序,后序。算法

这里给出彻底二叉树的三种方法,其余二叉树大体思想也差很少。设计

递归方法就不用说了,一共几行代码。有难度的是非递归算法。blog

先序线序遍历就是说最早输出的是根节点,而后是左右孩子节点。递归

如图所示,则输出顺序为  0  1 3 7 8 4 9 2 5 6二叉树

算法伪代码:遍历

开始:方法

     获得一棵树im

      根节点入栈数据

       while(栈非空)img

       {

              节点出栈。

              while(节点非叶子节点)

             {

                       输出节点

                       右孩子入栈

                        作孩子变为当前节点

              }

               输出节点

       }

由于是彻底二叉树,采用顺序存储相对简单,因此我判断是否为叶子节点,而不是是否为空

中序算法

开始

  获得一棵树

  根节点入栈

   while(栈非空)

    {

            取节点

            while(非叶子节点)

           {

                   节点入栈

                    当前节点变为作孩子

           }

           输出当前节点

           while(栈非空)

           {

                     取出节点

                      if(节点有有孩子)

                      {

                               有孩子入栈

                                 break;

                      }

                      else

                                 输出节点

           }

    }

前两个遍历相对简单,后续遍历就要复杂一点,须要咱们记录判断某个节点是否被输出过

后续算法

开始

    获得一棵树

     根节点入栈

      while(栈非空)

       {

           取节点

           while(非叶子)

           {

                  if(节点左右孩子均未输出)    //其实只判断右孩子就行

                   {

                                节点入栈

                                 右孩子入栈

                                  当前节点变为左孩子

                    }

                    else

                                   break;

            输出节点

            }

       }

 至于如何记录节点是否被访问,能够用节点座位一个数据构造一个结构体,我直接定义了一系列bool型,由于是顺序结构嘛,比较简单。

关于中序遍历,再补充一个本身设计的算法,原本是闭门造车,后来上网一查,找到了上面那个更好的算法,我这个算法也须要记录节点是否被访问

中序算法:

开始

    获得一棵树

     将根节点存入栈

     while(栈非空)

      {

           从栈中取出节点

           while(不是叶子节点)

            {

                   if(左孩子未被输出)

                   {

                          右孩子入栈

                           该节点入栈

                            当前节点变为其左孩子

                   }

                   else

                            break;

                    输出该节点

            }

      }

相关文章
相关标签/搜索