本篇为【Android架构师java原理详解】第一篇;泛型原理。后面会分享完整系列原理详解笔记,包括反射,多线程,JVM,虚拟机,序列化等重要知识点。有兴趣能够关注谢谢javascript
java知识是做为Android开发的语言基础,虽然以前又推出了kotlin,可是基于如下缘由咱们必须紧紧掌握java:php
1)SDK仍是改为java,kotlin也须要编译成为java运行;
2)目前大量的第三方库和继承与前任的代码都是java所写的;
3)Java语言应用不只仅在Android,就是在后台开发中也是一个最流行的语言;
4)大公司面试都要求咱们有扎实的Java语言基础。因此,但愿广大Android开发者朋友不要轻视提升本身Java基础的机会css
而泛型在java中有很重要的地位,在面向对象编程及各类设计模式中有很是普遍的应用。java
本篇泛型原理笔记详解,但愿抽丝剥茧的给你们详细介绍一下泛型原理,后续会更新分享java原理系列笔记,能够持续关注python
内容较多,本篇笔记配合视频详解学习更加容易吸取与理解。文末有分享
面试
泛型,即“参数化类型”。一提到参数,最熟悉的就是定义方法时有形参,而后调用此方法时传递实参。那么参数化类型怎么理解呢?顾名思义,就是将类型由原来的具体的类型参数化,相似于方法中的变量参数,此时类型也定义成参数形式(能够称之为类型形参),而后在使用/调用时传入具体的类型(类型实参)。编程
泛型的本质是为了参数化类型(在不建立新的类型的状况下,经过泛型指定的不一样类型来控制形参具体限制的类型)。也就是说在泛型使用过程当中,操做的数据类型被指定为一个参数,这种参数类型能够用在类、接口和方法中,分别被称为泛型类、泛型接口、泛型方法。设计模式
List arrayList = new ArrayList(); arrayList.add("aaaa"); arrayList.add(100); for(int i = 0; i< arrayList.size();i++){ String item = (String)arrayList.get(i); Log.d("泛型测试","item = " + item); } 复制代码
毫无疑问,程序的运行结果会以崩溃结束:数组
java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String 复制代码
ArrayList能够存听任意类型,例子中添加了一个String类型,添加了一个Integer类型,再使用时都以String的方式使用,所以程序崩溃了。为了解决相似这样的问题(在编译阶段就能够解决),泛型应运而生。安全
咱们将第一行声明初始化list的代码更改一下,编译器会在编译阶段就可以帮咱们发现相似这样的问题。
List<String> arrayList = new ArrayList<String>(); ... //arrayList.add(100); 在编译阶段,编译器就会报错 复制代码
泛型只在编译阶段有效。看下面的代码:
List<String> stringArrayList = new ArrayList<String>(); List<Integer> integerArrayList = new ArrayList<Integer>(); Class classStringArrayList = stringArrayList.getClass(); Class classIntegerArrayList = integerArrayList.getClass(); if(classStringArrayList.equals(classIntegerArrayList)){ Log.d("泛型测试","类型相同"); } 复制代码
输出结果:D/泛型测试: 类型相同。
经过上面的例子能够证实,在编译以后程序会采起去泛型化的措施。也就是说Java中的泛型,只在编译阶段有效。在编译过程当中,正确检验泛型结果后,会将泛型的相关信息擦出,而且在对象进入和离开方法的边界处添加类型检查和类型转换的方法。也就是说,泛型信息不会进入到运行时阶段。
对此总结成一句话:泛型类型在逻辑上看以当作是多个不一样的类型,实际上都是相同的基本类型。
泛型有三种使用方式,分别为:泛型类、泛型接口、泛型方法
泛型类型用于类的定义中,被称为泛型类。经过泛型能够完成对一组类的操做对外开放相同的接口。最典型的就是各类容器类,如:List、Set、Map。
泛型类的最基本写法(这么看可能会有点晕,会在下面的例子中详解):
class 类名称 <泛型标识:能够随便写任意标识号,标识指定的泛型的类型>{ private 泛型标识 /*(成员变量类型)*/ var; ..... } } 复制代码
一个最普通的泛型类:
//此处T能够随便写为任意标识,常见的如T、E、K、V等形式的参数经常使用于表示泛型 //在实例化泛型类时,必须指定T的具体类型 public class Generic<T>{ //key这个成员变量的类型为T,T的类型由外部指定 private T key; public Generic(T key) { //泛型构造方法形参key的类型也为T,T的类型由外部指定 this.key = key; } public T getKey(){ //泛型方法getKey的返回值类型为T,T的类型由外部指定 return key; } } 复制代码
//泛型的类型参数只能是类类型(包括自定义类),不能是简单类型 //传入的实参类型需与泛型的类型参数类型相同,即为Integer. Generic<Integer> genericInteger = new Generic<Integer>(123456); //传入的实参类型需与泛型的类型参数类型相同,即为String. Generic<String> genericString = new Generic<String>("key_vlaue"); Log.d("泛型测试","key is " + genericInteger.getKey()); Log.d("泛型测试","key is " + genericString.getKey()); 复制代码
12-27 09:20:04.432 13063-13063/? D/泛型测试: key is 123456
12-27 09:20:04.432 13063-13063/? D/泛型测试: key is key_vlaue
复制代码
定义的泛型类,就必定要传入泛型类型实参么?并非这样,在使用泛型的时候若是传入泛型实参,则会根据传入的泛型实参作相应的限制,此时泛型才会起到本应起到的限制做用。若是不传入泛型类型实参的话,在泛型类中使用泛型的方法或成员变量定义的类型能够为任何的类型。
看一个例子:
Generic generic = new Generic("111111"); Generic generic1 = new Generic(4444); Generic generic2 = new Generic(55.55); Generic generic3 = new Generic(false); Log.d("泛型测试","key is " + generic.getKey()); Log.d("泛型测试","key is " + generic1.getKey()); Log.d("泛型测试","key is " + generic2.getKey()); Log.d("泛型测试","key is " + generic3.getKey()); 复制代码
D/泛型测试: key is 111111 D/泛型测试: key is 4444 D/泛型测试: key is 55.55 D/泛型测试: key is false 复制代码
注意:
泛型的类型参数只能是类类型,不能是简单类型。
不能对确切的泛型类型使用instanceof操做。以下面的操做是非法的,编译时会出错。
if(ex_num instanceof Generic<Number>){ } 复制代码
泛型接口与泛型类的定义及使用基本相同。泛型接口常被用在各类类的生产器中,能够看一个例子:
//定义一个泛型接口 public interface Generator<T> { public T next(); } 复制代码
当实现泛型接口的类,未传入泛型实参时:
/** * 未传入泛型实参时,与泛型类的定义相同,在声明类的时候,需将泛型的声明也一块儿加到类中 * 即:class FruitGenerator<T> implements Generator<T>{ * 若是不声明泛型,如:class FruitGenerator implements Generator<T>,编译器会报错:"Unknown class" */ class FruitGenerator<T> implements Generator<T>{ @Override public T next() { return null; } } 复制代码
当实现泛型接口的类,传入泛型实参时:
/** * 传入泛型实参时: * 定义一个生产器实现这个接口,虽然咱们只建立了一个泛型接口Generator<T> * 可是咱们能够为T传入无数个实参,造成无数种类型的Generator接口。 * 在实现类实现泛型接口时,如已将泛型类型传入实参类型,则全部使用泛型的地方都要替换成传入的实参类型 * 即:Generator<T>,public T next();中的的T都要替换成传入的String类型。 */ public class FruitGenerator implements Generator<String> { private String[] fruits = new String[]{"Apple", "Banana", "Pear"}; @Override public String next() { Random rand = new Random(); return fruits[rand.nextInt(3)]; } } 复制代码
咱们知道Ingeter是Number的一个子类,同时在特性章节中咱们也验证过Generic<Ingeter>与Generic<Number>其实是相同的一种基本类型。那么问题来了,在使用Generic<Number>做为形参的方法中,可否使用Generic<Ingeter>的实例传入呢?在逻辑上相似于Generic<Number>和Generic<Ingeter>是否能够当作具备父子关系的泛型类型呢?
为了弄清楚这个问题,咱们使用Generic<T>这个泛型类继续看下面的例子:
public void showKeyValue1(Generic<Number> obj){ Log.d("泛型测试","key value is " + obj.getKey()); } 复制代码
Generic<Integer> gInteger = new Generic<Integer>(123); Generic<Number> gNumber = new Generic<Number>(456); showKeyValue(gNumber); // showKeyValue这个方法编译器会为咱们报错:Generic<java.lang.Integer> // cannot be applied to Generic<java.lang.Number> // showKeyValue(gInteger); 复制代码
经过提示信息咱们能够看到Generic<Integer>不能被看做为`Generic<Number>的子类。由此能够看出:同一种泛型能够对应多个版本(由于参数类型是不肯定的),不一样版本的泛型类实例是不兼容的。
回到上面的例子,如何解决上面的问题?总不能为了定义一个新的方法来处理Generic<Integer>类型的类,这显然与java中的多台理念相违背。所以咱们须要一个在逻辑上能够表示同时是Generic<Integer>和Generic<Number>父类的引用类型。由此类型通配符应运而生。
咱们能够将上面的方法改一下:
public void showKeyValue1(Generic<?> obj){ Log.d("泛型测试","key value is " + obj.getKey()); } 复制代码
类型通配符通常是使用?代替具体的类型实参,注意了,此处’?’是类型实参,而不是类型形参 。重要说三遍!此处’?’是类型实参,而不是类型形参 ! 此处’?’是类型实参,而不是类型形参 !再直白点的意思就是,此处的?和Number、String、Integer同样都是一种实际的类型,能够把?当作全部类型的父类。是一种真实的类型。
能够解决当具体类型不肯定的时候,这个通配符就是 ? ;当操做类型时,不须要使用类型的具体功能时,只使用Object类中的功能。那么能够用 ? 通配符来表未知类型。
在java中,泛型类的定义很是简单,可是泛型方法就比较复杂了。
尤为是咱们见到的大多数泛型类中的成员方法也都使用了泛型,有的甚至泛型类中也包含着泛型方法,这样在初学者中很是容易将泛型方法理解错了。
泛型类,是在实例化类的时候指明泛型的具体类型;泛型方法,是在调用方法的时候指明泛型的具体类型 。
/** * 泛型方法的基本介绍 * @param tClass 传入的泛型实参 * @return T 返回值为T类型 * 说明: * 1)public 与 返回值中间<T>很是重要,能够理解为声明此方法为泛型方法。 * 2)只有声明了<T>的方法才是泛型方法,泛型类中的使用了泛型的成员方法并非泛型方法。 * 3)<T>代表该方法将使用泛型类型T,此时才能够在方法中使用泛型类型T。 * 4)与泛型类的定义同样,此处T能够随便写为任意标识,常见的如T、E、K、V等形式的参数经常使用于表示泛型。 */ public <T> T genericMethod(Class<T> tClass)throws InstantiationException , IllegalAccessException{ T instance = tClass.newInstance(); return instance; } 复制代码
Object obj = genericMethod(Class.forName("com.test.test")); 复制代码
public class GenericTest { //这个类是个泛型类,在上面已经介绍过 public class Generic<T>{ private T key; public Generic(T key) { this.key = key; } //我想说的实际上是这个,虽然在方法中使用了泛型,可是这并非一个泛型方法。 //这只是类中一个普通的成员方法,只不过他的返回值是在声明泛型类已经声明过的泛型。 //因此在这个方法中才能够继续使用 T 这个泛型。 public T getKey(){ return key; } /** * 这个方法显然是有问题的,在编译器会给咱们提示这样的错误信息"cannot reslove symbol E" * 由于在类的声明中并未声明泛型E,因此在使用E作形参和返回值类型时,编译器会没法识别。 public E setKey(E key){ this.key = keu } */ } /** * 这才是一个真正的泛型方法。 * 首先在public与返回值之间的<T>必不可少,这代表这是一个泛型方法,而且声明了一个泛型T * 这个T能够出如今这个泛型方法的任意位置. * 泛型的数量也能够为任意多个 * 如:public <T,K> K showKeyName(Generic<T> container){ * ... * } */ public <T> T showKeyName(Generic<T> container){ System.out.println("container key :" + container.getKey()); //固然这个例子举的不太合适,只是为了说明泛型方法的特性。 T test = container.getKey(); return test; } //这也不是一个泛型方法,这就是一个普通的方法,只是使用了Generic<Number>这个泛型类作形参而已。 public void showKeyValue1(Generic<Number> obj){ Log.d("泛型测试","key value is " + obj.getKey()); } //这也不是一个泛型方法,这也是一个普通的方法,只不过使用了泛型通配符? //同时这也印证了泛型通配符章节所描述的,?是一种类型实参,能够看作为Number等全部类的父类 public void showKeyValue2(Generic<?> obj){ Log.d("泛型测试","key value is " + obj.getKey()); } /** * 这个方法是有问题的,编译器会为咱们提示错误信息:"UnKnown class 'E' " * 虽然咱们声明了<T>,也代表了这是一个能够处理泛型的类型的泛型方法。 * 可是只声明了泛型类型T,并未声明泛型类型E,所以编译器并不知道该如何处理E这个类型。 public <T> T showKeyName(Generic<E> container){ ... } */ /** * 这个方法也是有问题的,编译器会为咱们提示错误信息:"UnKnown class 'T' " * 对于编译器来讲T这个类型并未项目中声明过,所以编译也不知道该如何编译这个类。 * 因此这也不是一个正确的泛型方法声明。 public void showkey(T genericObj){ } */ public static void main(String[] args) { } } 复制代码
public class GenericFruit { class Fruit{ @Override public String toString() { return "fruit"; } } class Apple extends Fruit{ @Override public String toString() { return "apple"; } } class Person{ @Override public String toString() { return "Person"; } } class GenerateTest<T>{ public void show_1(T t){ System.out.println(t.toString()); } //在泛型类中声明了一个泛型方法,使用泛型E,这种泛型E能够为任意类型。能够类型与T相同,也能够不一样。 //因为泛型方法在声明的时候会声明泛型<E>,所以即便在泛型类中并未声明泛型,编译器也可以正确识别泛型方法中识别的泛型。 public <E> void show_3(E t){ System.out.println(t.toString()); } //在泛型类中声明了一个泛型方法,使用泛型T,注意这个T是一种全新的类型,能够与泛型类中声明的T不是同一种类型。 public <T> void show_2(T t){ System.out.println(t.toString()); } } public static void main(String[] args) { Apple apple = new Apple(); Person person = new Person(); GenerateTest<Fruit> generateTest = new GenerateTest<Fruit>(); //apple是Fruit的子类,因此这里能够 generateTest.show_1(apple); //编译器会报错,由于泛型类型实参指定的是Fruit,而传入的实参类是Person //generateTest.show_1(person); //使用这两个方法均可以成功 generateTest.show_2(apple); generateTest.show_2(person); //使用这两个方法也均可以成功 generateTest.show_3(apple); generateTest.show_3(person); } } 复制代码
public <T> void printMsg( T... args){ for(T t : args){ Log.d("泛型测试","t is " + t); } } 复制代码
printMsg("111",222,"aaaa","2323.4",55.55); 复制代码
即:若是静态方法要使用泛型的话,必须将静态方法也定义成泛型方法 。
public class StaticGenerator<T> { .... .... /** * 若是在类中定义使用泛型的静态方法,须要添加额外的泛型声明(将这个方法定义成泛型方法) * 即便静态方法要使用泛型类中已经声明过的泛型也不能够。 * 如:public static void show(T t){..},此时编译器会提示错误信息: "StaticGenerator cannot be refrenced from static context" */ public static <T> void show(T t){ } } 复制代码
不管什么时候,若是你能作到,你就该尽可能使用泛型方法。也就是说,若是使用泛型方法将整个类泛型化,那么就应该使用泛型方法。另外对于一个static的方法而已,没法访问泛型类型的参数。因此若是static方法要使用泛型能力,就必须使其成为泛型方法。
为泛型添加上边界,即传入的类型实参必须是指定类型的子类型;
public void showKeyValue1(Generic<? extends Number> obj){ Log.d("泛型测试","key value is " + obj.getKey()); } 复制代码
Generic<String> generic1 = new Generic<String>("11111"); Generic<Integer> generic2 = new Generic<Integer>(2222); Generic<Float> generic3 = new Generic<Float>(2.4f); Generic<Double> generic4 = new Generic<Double>(2.56); //这一行代码编译器会提示错误,由于String类型并非Number类型的子类 //showKeyValue1(generic1); showKeyValue1(generic2); showKeyValue1(generic3); showKeyValue1(generic4); 复制代码
若是咱们把泛型类的定义也改一下:
public class Generic<T extends Number>{ private T key; public Generic(T key) { this.key = key; } public T getKey(){ return key; } } 复制代码
//这一行代码也会报错,由于String不是Number的子类 Generic<String> generic1 = new Generic<String>("11111"); 复制代码
再来一个泛型方法的例子:
//在泛型方法中添加上下边界限制的时候,必须在权限声明与返回值之间的<T>上添加上下边界,即在泛型声明的时候添加 //public <T> T showKeyName(Generic<T extends Number> container),编译器会报错:"Unexpected bound" public <T extends Number> T showKeyName(Generic<T> container){ System.out.println("container key :" + container.getKey()); T test = container.getKey(); return test; } 复制代码
经过上面的两个例子能够看出:泛型的上下边界添加,必须与泛型的声明在一块儿 。
看到了不少文章中都会提起泛型数组,通过查看sun的说明文档,在java中是”不能建立一个确切的泛型类型的数组”的。
也就是说下面的这个例子是不能够的:
List<String>[] ls = new ArrayList<String>[10]; 复制代码
而使用通配符建立泛型数组是能够的,以下面这个例子:
List<?>[] ls = new ArrayList<?>[10]; 复制代码
这样也是能够的:
List<String>[] ls = new ArrayList[10]; 复制代码
下面使用Sun的一篇文档的一个例子来讲明这个问题:
List<String>[] lsa = new List<String>[10]; // Not really allowed. Object o = lsa; Object[] oa = (Object[]) o; List<Integer> li = new ArrayList<Integer>(); li.add(new Integer(3)); oa[1] = li; // Unsound, but passes run time store check String s = lsa[1].get(0); // Run-time error: ClassCastException. 复制代码
这种状况下,因为JVM泛型的擦除机制,在运行时JVM是不知道泛型信息的,因此能够给oa[1]赋上一个ArrayList而不会出现异常,可是在取出数据的时候却要作一次类型转换,因此就会出现ClassCastException,若是能够进行泛型数组的声明,上面说的这种状况在编译期将不会出现任何的警告和错误,只有在运行时才会出错。
而对泛型数组的声明进行限制,对于这样的状况,能够在编译期提示代码有类型安全问题,比没有任何提示要强不少。
下面采用通配符的方式是被容许的:数组的类型不能够是类型变量,除非是采用通配符的方式,由于对于通配符的方式,最后取出数据是要作显式的类型转换的。
List<?>[] lsa = new List<?>[10]; // OK, array of unbounded wildcard type. Object o = lsa; Object[] oa = (Object[]) o; List<Integer> li = new ArrayList<Integer>(); li.add(new Integer(3)); oa[1] = li; // Correct. Integer i = (Integer) lsa[1].get(0); // OK 复制代码
本文中的例子主要是为了阐述泛型中的一些思想而简单举出的,并不必定有着实际的可用性。另外,一提到泛型,相信你们用到最多的就是在集合中,其实,在实际的编程过程当中,本身可使用泛型去简化开发,且能很好的保证代码质量。
Java与Android内核原理专题技术大纲;
架构技术详解和学习路线与资料分享都整理在博客这篇文章里;《BATJ一线大厂最主流的Android高级架构技术;体系详解+学习路线》
(包括自定义控件、NDK、架构设计、混合式开发工程师(React native,Weex)、性能优化、完整商业项目开发等)