runtime.Gosched()表示让CPU把时间片让给别人,下次某个时候继续恢复执行该goroutinegit
import ( "fmt" "runtime" ) func main() { go say("world") say("hello") } func say(s string) { for i := 0; i < 5; i++ { runtime.Gosched() fmt.Println(s) } }
输出:github
hello world hello world hello world hello world hello
查看web
println(runtime.Version()) // go1.4.1 println(runtime.NumGoroutine()) // 2 println(runtime.NumCPU()) // 4 println(runtime.GOMAXPROCS(-1)) // 1
func init() { numcpu := runtime.NumCPU() runtime.GOMAXPROCS(numcpu) // 尝试使用全部可用的CPU }
defer debug.SetGCPercent(debug.SetGCPercent(-1))
runtime.GC()
GODEBUG=gctrace=1 ./test_server
将gc信息保存到文件:bash
GODEBUG=gctrace=1 go run main.go 2> gctrace.log
可视化信息 https://github.com/davecheney/gcvis
闭包
GODEBUG=gctrace=1 ./test_server 2>&1 | gcvis
go func() { fmt.Println("i am a goroutine") time.Sleep(time.Second) }() time.Sleep(500 * time.Millisecond) buf := make([]byte, 1024) n := runtime.Stack(buf, false) fmt.Println(string(buf[:n])) fmt.Println("===================") n = runtime.Stack(buf, true) fmt.Println(string(buf[:n]))
第一个输出:函数
goroutine 1 [running]: main.main() /项目路径/src/Test/Test.go:18 +0xa5
第二个输出:测试
goroutine 1 [running]: main.main() /项目路径/src/Test/Test.go:23 +0x2c2 goroutine 17 [sleep]: time.Sleep(0x3b9aca00) /usr/local/go/src/runtime/time.go:59 +0xf9 main.main.func1() /项目路径/src/Test/Test.go:12 +0xd9 created by main.main /项目路径/src/Test/Test.go:13 +0x37
data := debug.Stack()
输出:ui
/项目路径/src/test/test.go:17 (0x400c49) main: data := debug.Stack() /go安装路径/src/runtime/proc.go:111 (0x42846f) main: main_main() /go安装路径/src/runtime/asm_amd64.s:1696 (0x454471) goexit: BYTE $0x90 // NOP
函数的签名以下:spa
func runtime.Caller(skip int) (pc uintptr, file string, line int, ok bool)
runtime.Caller 返回当前 goroutine 的栈上的函数调用信息. 主要有当前的 pc 值和调用的文件和行号等信息. 若没法得到信息, 返回的 ok 值为 false.debug
其输入参数 skip 为要跳过的栈帧数, 若为 0 则表示 runtime.Caller 的调用者.
注意:因为历史缘由, runtime.Caller 和 runtime.Callers 中的 skip 含义并不相同, 后面会讲到.
下面是一个简单的例子, 打印函数调用的栈帧信息:
package main import ( "fmt" "runtime" ) func main() { fun1() } func fun1() { for skip := 0; ; skip++ { pc, file, line, ok := runtime.Caller(skip) if !ok { break } fmt.Printf("skip = %v, pc = %v, file = %v, line = %v\n", skip, pc, file, line) } }
输出结果:
skip = 0, pc = 8274, file = /项目路径/src/test/main.go, line = 14 skip = 1, pc = 8219, file = /项目路径/src/test/main.go, line = 9 skip = 2, pc = 77123, file = /usr/local/go/src/runtime/proc.go, line = 63 skip = 3, pc = 227809, file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232
其中 skip = 0 为当前文件的 main.main 函数, 以及对应的行号.
另外的 skip = 1 和 skip = 2 也分别对应2个函数调用. 经过查阅 runtime/proc.c 文件的代码, 咱们能够知道对应的函数分别为 runtime.main 和 runtime.goexit.
整理以后能够知道, Go的普通程序的启动顺序以下:
函数的签名以下:
func runtime.Callers(skip int, pc []uintptr) int
runtime.Callers 函数和 runtime.Caller 函数虽然名字类似(多一个后缀s), 可是函数的参数/返回值和参数的意义都有很大的差别.
runtime.Callers 把调用它的函数Go程栈上的程序计数器填入切片 pc 中. 参数 skip 为开始在 pc 中记录以前所要跳过的栈帧数, 若为0则表示 runtime.Callers 自身的栈帧, 若为1则表示调用者的栈帧. 该函数返回写入到 pc 切片中的项数(受切片的容量限制).
下面是 runtime.Callers 的例子, 用于输出每一个栈帧的 pc 信息:
func main() { fun1() } func fun1() { pc := make([]uintptr, 1024) for skip := 0; ; skip++ { n := runtime.Callers(skip, pc) if n <= 0 { break } fmt.Printf("skip = %v, pc = %v\n", skip, pc[:n]) } }
输出:
skip = 0, pc = [28854 8368 8219 77155 227841] skip = 1, pc = [8368 8219 77155 227841] skip = 2, pc = [8219 77155 227841] skip = 3, pc = [77155 227841] skip = 4, pc = [227841]
输出新的 pc 长度和 skip 大小有逆相关性. skip = 0 为 runtime.Callers 自身的信息.
这个例子比前一个例子多输出了一个栈帧, 就是由于多了一个runtime.Callers栈帧的信息(前一个例子是没有runtime.Caller信息的(注意:没有s后缀)).
那么 runtime.Callers 和 runtime.Caller 有哪些关联和差别?
由于前面2个例子为不一样的程序, 输出的 pc 值并不具有参考性. 如今咱们看看在同一个例子的输出结果如何:
package main import ( "fmt" "runtime" ) func main() { fun1() } func fun1() { for skip := 0; ; skip++ { pc, file, line, ok := runtime.Caller(skip) if !ok { break } fmt.Printf("skip = %v, pc = %v, file = %v, line = %v\n", skip, pc, file, line) } pc := make([]uintptr, 1024) for skip := 0; ; skip++ { n := runtime.Callers(skip, pc) if n <= 0 { break } fmt.Printf("skip = %v, pc = %v\n", skip, pc[:n]) } }
输出:
skip = 0, pc = 8277, file = /项目路径/src/test/main.go, line = 14 skip = 1, pc = 8219, file = /项目路径/src/test/main.go, line = 9 skip = 2, pc = 78179, file = /usr/local/go/src/runtime/proc.go, line = 63 skip = 3, pc = 228865, file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232 skip = 0, pc = [29878 8449 8219 78179 228865] skip = 1, pc = [8449 8219 78179 228865] skip = 2, pc = [8219 78179 228865] skip = 3, pc = [78179 228865] skip = 4, pc = [228865]
好比输出结果能够发现, 8219 78179 228865 这个 pc 值是相同的. 它们分别对应 main.main, runtime.main 和 runtime.goexit 函数.
runtime.Caller 输出的 8277 和 runtime.Callers 输出的 8449 并不相同. 这是由于, 这两个函数的调用位置并不相同, 所以致使了 pc 值也不彻底相同.
最后就是 runtime.Callers 多输出一个 29878 值, 对应runtime.Callers内部的调用位置.
因为Go语言(Go1.2)采用分段堆栈, 所以不一样的 pc 之间的大小关系并不明显.
函数的签名以下:
func runtime.FuncForPC(pc uintptr) *runtime.Func func (f *runtime.Func) FileLine(pc uintptr) (file string, line int) func (f *runtime.Func) Entry() uintptr func (f *runtime.Func) Name() string
其中 runtime.FuncForPC 返回包含给定 pc 地址的函数, 若是是无效 pc 则返回 nil .
runtime.Func.FileLine 返回与 pc 对应的源码文件名和行号. 安装文档的说明, 若是pc不在函数帧范围内, 则结果是不肯定的.
runtime.Func.Entry 对应函数的地址. runtime.Func.Name 返回该函数的名称.
下面是 runtime.FuncForPC 的例子:
package main import ( "fmt" "runtime" ) func main() { fun1() } func fun1() { for skip := 0; ; skip++ { pc, _, _, ok := runtime.Caller(skip) if !ok { break } p := runtime.FuncForPC(pc) file, line := p.FileLine(0) fmt.Printf("skip = %v, pc = %v\n", skip, pc) fmt.Printf(" file = %v, line = %d\n", file, line) fmt.Printf(" entry = %v\n", p.Entry()) fmt.Printf(" name = %v\n", p.Name()) } fmt.Println("-------------------------") pc := make([]uintptr, 1024) for skip := 0; ; skip++ { n := runtime.Callers(skip, pc) if n <= 0 { break } fmt.Printf("skip = %v, pc = %v\n", skip, pc[:n]) for j := 0; j < n; j++ { p := runtime.FuncForPC(pc[j]) file, line := p.FileLine(0) fmt.Printf(" skip = %v, pc = %v\n", skip, pc[j]) fmt.Printf(" file = %v, line = %d\n", file, line) fmt.Printf(" entry = %v\n", p.Entry()) fmt.Printf(" name = %v\n", p.Name()) } break } }
输出:
skip = 0, pc = 8277 file = /项目路径/src/test/main.go, line = 12 entry = 8224 name = main.fun1 skip = 1, pc = 8219 file = /项目路径/src/test/main.go, line = 8 entry = 8192 name = main.main skip = 2, pc = 80579 file = /usr/local/go/src/runtime/proc.go, line = 16 entry = 80336 name = runtime.main skip = 3, pc = 231265 file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232 entry = 231264 name = runtime.goexit ------------------------- skip = 0, pc = [32278 8634 8219 80579 231265] skip = 0, pc = 32278 file = /usr/local/go/src/runtime/extern.go, line = 134 entry = 32192 name = runtime.Callers skip = 0, pc = 8634 file = /项目路径/src/test/main.go, line = 12 entry = 8224 name = main.fun1 skip = 0, pc = 8219 file = /项目路径/src/test/main.go, line = 8 entry = 8192 name = main.main skip = 0, pc = 80579 file = /usr/local/go/src/runtime/proc.go, line = 16 entry = 80336 name = runtime.main skip = 0, pc = 231265 file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232 entry = 231264 name = runtime.goexit
根据测试, 若是是无效 pc (好比0), runtime.Func.FileLine 通常会输出当前函数的开始行号. 不过在实践中, 通常会用 runtime.Caller 获取文件名和行号信息, runtime.Func.FileLine 不多用到(如何独立获取pc参数?).
基于前面的几个函数, 咱们能够方便的定制一个 CallerName 函数. 函数 CallerName 返回调用者的函数名/文件名/行号等用户友好的信息.
函数实现以下:
package main import ( "fmt" "runtime" ) func main() { for skip := 0; ; skip++ { name, file, line, ok := CallerName(skip) if !ok { break } fmt.Printf("skip = %v\n", skip) fmt.Printf(" file = %v, line = %d\n", file, line) fmt.Printf(" name = %v\n", name) } } func CallerName(skip int) (name, file string, line int, ok bool) { var pc uintptr if pc, file, line, ok = runtime.Caller(skip + 1); !ok { return } name = runtime.FuncForPC(pc).Name() return }
输出:
skip = 0 file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 10 name = main.main skip = 1 file = /usr/local/go/src/runtime/proc.go, line = 63 name = runtime.main skip = 2 file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232 name = runtime.goexit
其中在执行 runtime.Caller 调用时, 参数 skip + 1 用于抵消 CallerName 函数自身的调用.
在Go语言中, 除了语言定义的普通函数调用外, 还有闭包函数/init函数/全局变量初始化等不一样的函数调用类型.
为了便于测试不一样类型的函数调用, 咱们包装一个 PrintCallerName 函数. 该函数用于输出调用者的信息.
package main import ( "fmt" "runtime" ) var a = PrintCallerName(0, "main.a") var b = PrintCallerName(0, "main.b") func init() { a = PrintCallerName(0, "main.init.a") } func init() { b = PrintCallerName(0, "main.init.b") func() { b = PrintCallerName(0, "main.init.b[1]") }() } func main() { a = PrintCallerName(0, "main.main.a") b = PrintCallerName(0, "main.main.b") func() { b = PrintCallerName(0, "main.main.b[1]") func() { b = PrintCallerName(0, "main.main.b[1][1]") }() b = PrintCallerName(0, "main.main.b[2]") }() } func PrintCallerName(skip int, comment string) bool { name, file, line, ok := CallerName(skip + 1) if !ok { return false } fmt.Printf("skip = %v, comment = %s\n", skip, comment) fmt.Printf(" file = %v, line = %d\n", file, line) fmt.Printf(" name = %v\n", name) return true } func CallerName(skip int) (name, file string, line int, ok bool) { var pc uintptr if pc, file, line, ok = runtime.Caller(skip + 1); !ok { return } name = runtime.FuncForPC(pc).Name() return }
输出:
skip = 0, comment = main.a file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 8 name = main.init skip = 0, comment = main.b file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 9 name = main.init skip = 0, comment = main.init.a file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 12 name = main.init·1 skip = 0, comment = main.init.b file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 16 name = main.init·2 skip = 0, comment = main.init.b[1] file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 18 name = main.func·001 skip = 0, comment = main.main.a file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 23 name = main.main skip = 0, comment = main.main.b file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 24 name = main.main skip = 0, comment = main.main.b[1] file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 26 name = main.func·003 skip = 0, comment = main.main.b[1][1] file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 28 name = main.func·002 skip = 0, comment = main.main.b[2] file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 30 name = main.func·003
观察输出结果, 能够发现如下几个规律:
好比如下全局变量的初始化调用者为 main.init 函数:
var a = PrintCallerName(0, "main.a") var b = PrintCallerName(0, "main.b")
如下两个 init 函数根据出现顺序分别对应 main.init·1 和 main.init·2 :
func init() { // main.init·1 // } func init() { // main.init·2 // }
如下三个闭包根据定义结束顺序分别为 001 / 002 / 003 :
func init() { func(){ // }() // main.func·001 } func main() { func() { func(){ // }() // main.func·002 }() // main.func·003 }
由于, 这些特殊函数调用方式的存在, 咱们须要进一步完善 CallerName 函数.
两类特殊的调用是 init 类函数调用 和 闭包函数调用.
改进后的 CallerName 函数对 init 类函数调用者统一处理为 init 函数. 将闭包函数调用这处理为调用者的函数名.
func CallerName(skip int) (name, file string, line int, ok bool) { var ( reInit = regexp.MustCompile(`init·\d+$`) // main.init·1 reClosure = regexp.MustCompile(`func·\d+$`) // main.func·001 ) for { var pc uintptr if pc, file, line, ok = runtime.Caller(skip + 1); !ok { return } name = runtime.FuncForPC(pc).Name() if reInit.MatchString(name) { name = reInit.ReplaceAllString(name, "init") return } if reClosure.MatchString(name) { skip++ continue } return } return }
输出:
skip = 0, comment = main.a file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 9 name = main.init skip = 0, comment = main.b file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 10 name = main.init skip = 0, comment = main.init.a file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 13 name = main.init skip = 0, comment = main.init.b file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 17 name = main.init skip = 0, comment = main.init.b[1] file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 20 name = main.init skip = 0, comment = main.main.a file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 24 name = main.main skip = 0, comment = main.main.b file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 25 name = main.main skip = 0, comment = main.main.b[1] file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 32 name = main.main skip = 0, comment = main.main.b[1][1] file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 32 name = main.main skip = 0, comment = main.main.b[2] file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 32 name = main.main
有如下的代码:
func init() { myInit("1") } func main() { myInit("2") } var myInit = func(name string) { PrintCallerName(0, name+":main.myInit.b") }
输出:
skip = 0, comment = 1:main.myInit.b file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 10 name = main.init skip = 0, comment = 2:main.myInit.b file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 13 name = main.main
从直观上看, myInit闭包函数在执行时, 最好输出 main.myInit 函数名. 可是 main.myInit 只是一个绑定到闭包函数的变量, 而闭包的真正名字是 main.func·???(这里若是用改进以前的CallerName的话,输出是main.func·001). 在运行时是没法获得 main.myInit 这个名字的.
基于函数调用者信息能够很容易的验证各类环境的程序启动流程.
test:
package main import ( "fmt" "testing" ) func TestPrintCallerName(t *testing.T) { for skip := 0; ; skip++ { name, file, line, ok := CallerName(skip) if !ok { break } fmt.Printf("skip = %v, name = %v, file = %v, line = %v\n", skip, name, file, line) } t.Fail() }
example:
package main import ( myMain "." "fmt" ) func Example() { for skip := 0; ; skip++ { name, file, line, ok := myMain.CallerName(skip) if !ok { break } fmt.Printf("skip = %v, name = %v, file = %v, line = %v\n", skip, name, file, line) } // Output: ? }
运行 go test , 获得的输出:
=== RUN TestPrintCallerName skip = 0, name = test.TestPrintCallerName, file = /Users/zhangyuchen/go/pro/src/test/main_test.go, line = 10 skip = 1, name = testing.tRunner, file = /usr/local/go/src/testing/testing.go, line = 447 skip = 2, name = runtime.goexit, file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232 --- FAIL: TestPrintCallerName (0.00s) === RUN: Example --- FAIL: Example (0.00s) got: skip = 0, name = test.Example, file = /Users/zhangyuchen/go/pro/src/test/example_test.go, line = 10 skip = 1, name = testing.runExample, file = /usr/local/go/src/testing/example.go, line = 98 skip = 2, name = testing.RunExamples, file = /usr/local/go/src/testing/example.go, line = 36 skip = 3, name = testing.(*M).Run, file = /usr/local/go/src/testing/testing.go, line = 486 skip = 4, name = main.main, file = test/_test/_testmain.go, line = 54 skip = 5, name = runtime.main, file = /usr/local/go/src/runtime/proc.go, line = 63 skip = 6, name = runtime.goexit, file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232 want: ? FAIL exit status 1 FAIL test 0.008s
分析输出数据咱们能够发现, 测试代码和例子代码的启动流程和普通的程序流程都不太同样.
测试代码的启动流程:
例子代码的启动流程:
另外, 从这个例子咱们能够发现, 咱们本身写的 main.main 函数所在的 main 包也能够被其余包导入. 可是其余包导入以后的 main 包里的 main 函数就再也不是main.main 函数了. 所以, 程序的入口也就不是本身写的 main.main 函数了.
var m runtime.MemStats runtime.ReadMemStats(&m) format := "%-40s : %d bytes\n" fmt.Printf(format, "bytes allocated and still in use", m.HeapAlloc) fmt.Printf(format, "bytes obtained from system", m.HeapSys) fmt.Printf(format, "bytes in idle spans", m.HeapIdle) fmt.Printf(format, "bytes in non-idle span", m.HeapInuse) fmt.Printf(format, "bytes released to the OS", m.HeapReleased) fmt.Printf(format, "total number of allocated objects", m.HeapObjects)
输出:
bytes allocated and still in use : 38928 bytes bytes obtained from system : 851968 bytes bytes in idle spans : 696320 bytes bytes in non-idle span : 155648 bytes bytes released to the OS : 0 bytes total number of allocated objects : 113 bytes
router := httprouter.New() router.HandlerFunc("GET", "/debug/pprof", pprof.Index) router.Handler("GET", "/debug/heap", pprof.Handler("heap")) router.Handler("GET", "/debug/goroutine", pprof.Handler("goroutine")) router.Handler("GET", "/debug/block", pprof.Handler("block")) router.Handler("GET", "/debug/threadcreate", pprof.Handler("threadcreate")) // 启动时的命令,好比 bin/debug -a=1 router.HandlerFunc("GET", "/debug/pprof/cmdline", pprof.Cmdline) router.HandlerFunc("GET", "/debug/pprof/symbol", pprof.Symbol) router.HandlerFunc("GET", "/debug/pprof/profile", pprof.Profile) router.HandlerFunc("GET", "/debug/pprof/trace", pprof.Trace) http.ListenAndServe(":8080", router)