Go笔记-runtime

Gosched()

runtime.Gosched()表示让CPU把时间片让给别人,下次某个时候继续恢复执行该goroutinegit

import (
	"fmt"
	"runtime"
)

func main() {
	go say("world")
	say("hello")
}

func say(s string) {
	for i := 0; i < 5; i++ {
		runtime.Gosched()
		fmt.Println(s)
	}
}

输出:github

hello
world
hello
world
hello
world
hello
world
hello

运行时但愿多少个goroutine来同时地运行代码

查看web

println(runtime.Version())      // go1.4.1
	println(runtime.NumGoroutine()) // 2
	println(runtime.NumCPU())       // 4
	println(runtime.GOMAXPROCS(-1)) // 1
func init() {
    numcpu := runtime.NumCPU()
    runtime.GOMAXPROCS(numcpu) // 尝试使用全部可用的CPU
}

gc

disable gc

defer debug.SetGCPercent(debug.SetGCPercent(-1))

运行gc

runtime.GC()

查看gc信息

GODEBUG=gctrace=1 ./test_server

将gc信息保存到文件:bash

GODEBUG=gctrace=1 go run main.go 2> gctrace.log

可视化信息 https://github.com/davecheney/gcvis闭包

GODEBUG=gctrace=1 ./test_server 2>&1 | gcvis

方法调用栈

堆栈信息

go func() {
		fmt.Println("i am a goroutine")
		time.Sleep(time.Second)
	}()

	time.Sleep(500 * time.Millisecond)

	buf := make([]byte, 1024)
	n := runtime.Stack(buf, false)
	fmt.Println(string(buf[:n]))

	fmt.Println("===================")

	n = runtime.Stack(buf, true)
	fmt.Println(string(buf[:n]))

第一个输出:函数

goroutine 1 [running]:
main.main()
	/项目路径/src/Test/Test.go:18 +0xa5

第二个输出:测试

goroutine 1 [running]:
main.main()
	/项目路径/src/Test/Test.go:23 +0x2c2

goroutine 17 [sleep]:
time.Sleep(0x3b9aca00)
	/usr/local/go/src/runtime/time.go:59 +0xf9
main.main.func1()
	/项目路径/src/Test/Test.go:12 +0xd9
created by main.main
	/项目路径/src/Test/Test.go:13 +0x37

data := debug.Stack()

输出:ui

/项目路径/src/test/test.go:17 (0x400c49)
        main: data := debug.Stack()
/go安装路径/src/runtime/proc.go:111 (0x42846f)
        main: main_main()
/go安装路径/src/runtime/asm_amd64.s:1696 (0x454471)
        goexit: BYTE    $0x90   // NOP

runtime.Caller 的用法

函数的签名以下:spa

func runtime.Caller(skip int) (pc uintptr, file string, line int, ok bool)

runtime.Caller 返回当前 goroutine 的栈上的函数调用信息. 主要有当前的 pc 值和调用的文件和行号等信息. 若没法得到信息, 返回的 ok 值为 false.debug

其输入参数 skip 为要跳过的栈帧数, 若为 0 则表示 runtime.Caller 的调用者.

注意:因为历史缘由, runtime.Caller 和 runtime.Callers 中的 skip 含义并不相同, 后面会讲到.

下面是一个简单的例子, 打印函数调用的栈帧信息:

package main

import (
	"fmt"
	"runtime"
)

func main() {
	fun1()
}

func fun1() {
	for skip := 0; ; skip++ {
		pc, file, line, ok := runtime.Caller(skip)
		if !ok {
			break
		}
		fmt.Printf("skip = %v, pc = %v, file = %v, line = %v\n", skip, pc, file, line)
	}
}

输出结果:

skip = 0, pc = 8274, file = /项目路径/src/test/main.go, line = 14
skip = 1, pc = 8219, file = /项目路径/src/test/main.go, line = 9
skip = 2, pc = 77123, file = /usr/local/go/src/runtime/proc.go, line = 63
skip = 3, pc = 227809, file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232

其中 skip = 0 为当前文件的 main.main 函数, 以及对应的行号.

另外的 skip = 1 和 skip = 2 也分别对应2个函数调用. 经过查阅 runtime/proc.c 文件的代码, 咱们能够知道对应的函数分别为 runtime.main 和 runtime.goexit.

整理以后能够知道, Go的普通程序的启动顺序以下:

  1. runtime.goexit 为真正的函数入口(并非main.main)
  2. 而后 runtime.goexit 调用 runtime.main 函数
  3. 最终 runtime.main 调用用户编写的 main.main 函数

runtime.Callers 的用法

函数的签名以下:

func runtime.Callers(skip int, pc []uintptr) int

runtime.Callers 函数和 runtime.Caller 函数虽然名字类似(多一个后缀s), 可是函数的参数/返回值和参数的意义都有很大的差别.

runtime.Callers 把调用它的函数Go程栈上的程序计数器填入切片 pc 中. 参数 skip 为开始在 pc 中记录以前所要跳过的栈帧数, 若为0则表示 runtime.Callers 自身的栈帧, 若为1则表示调用者的栈帧. 该函数返回写入到 pc 切片中的项数(受切片的容量限制).

下面是 runtime.Callers 的例子, 用于输出每一个栈帧的 pc 信息:

func main() {
	fun1()
}

func fun1() {
	pc := make([]uintptr, 1024)
	for skip := 0; ; skip++ {
		n := runtime.Callers(skip, pc)
		if n <= 0 {
			break
		}
		fmt.Printf("skip = %v, pc = %v\n", skip, pc[:n])
	}
}

输出:

skip = 0, pc = [28854 8368 8219 77155 227841]
skip = 1, pc = [8368 8219 77155 227841]
skip = 2, pc = [8219 77155 227841]
skip = 3, pc = [77155 227841]
skip = 4, pc = [227841]

输出新的 pc 长度和 skip 大小有逆相关性. skip = 0 为 runtime.Callers 自身的信息.

这个例子比前一个例子多输出了一个栈帧, 就是由于多了一个runtime.Callers栈帧的信息(前一个例子是没有runtime.Caller信息的(注意:没有s后缀)).

那么 runtime.Callers 和 runtime.Caller 有哪些关联和差别?

runtime.Callers 和 runtime.Caller 的异同

由于前面2个例子为不一样的程序, 输出的 pc 值并不具有参考性. 如今咱们看看在同一个例子的输出结果如何:

package main

import (
	"fmt"
	"runtime"
)

func main() {
	fun1()
}

func fun1() {
	for skip := 0; ; skip++ {
		pc, file, line, ok := runtime.Caller(skip)
		if !ok {
			break
		}
		fmt.Printf("skip = %v, pc = %v, file = %v, line = %v\n", skip, pc, file, line)
	}

	pc := make([]uintptr, 1024)
	for skip := 0; ; skip++ {
		n := runtime.Callers(skip, pc)
		if n <= 0 {
			break
		}
		fmt.Printf("skip = %v, pc = %v\n", skip, pc[:n])
	}
}

输出:

skip = 0, pc = 8277, file = /项目路径/src/test/main.go, line = 14
skip = 1, pc = 8219, file = /项目路径/src/test/main.go, line = 9
skip = 2, pc = 78179, file = /usr/local/go/src/runtime/proc.go, line = 63
skip = 3, pc = 228865, file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232
skip = 0, pc = [29878 8449 8219 78179 228865]
skip = 1, pc = [8449 8219 78179 228865]
skip = 2, pc = [8219 78179 228865]
skip = 3, pc = [78179 228865]
skip = 4, pc = [228865]

好比输出结果能够发现, 8219 78179 228865 这个 pc 值是相同的. 它们分别对应 main.main, runtime.main 和 runtime.goexit 函数.

runtime.Caller 输出的 8277 和 runtime.Callers 输出的 8449 并不相同. 这是由于, 这两个函数的调用位置并不相同, 所以致使了 pc 值也不彻底相同.

最后就是 runtime.Callers 多输出一个 29878 值, 对应runtime.Callers内部的调用位置.

因为Go语言(Go1.2)采用分段堆栈, 所以不一样的 pc 之间的大小关系并不明显.

runtime.FuncForPC 的用途

函数的签名以下:

func runtime.FuncForPC(pc uintptr) *runtime.Func
func (f *runtime.Func) FileLine(pc uintptr) (file string, line int)
func (f *runtime.Func) Entry() uintptr
func (f *runtime.Func) Name() string

其中 runtime.FuncForPC 返回包含给定 pc 地址的函数, 若是是无效 pc 则返回 nil .

runtime.Func.FileLine 返回与 pc 对应的源码文件名和行号. 安装文档的说明, 若是pc不在函数帧范围内, 则结果是不肯定的.

runtime.Func.Entry 对应函数的地址. runtime.Func.Name 返回该函数的名称.

下面是 runtime.FuncForPC 的例子:

package main

import (
	"fmt"
	"runtime"
)

func main() {
	fun1()
}

func fun1() {
	for skip := 0; ; skip++ {
		pc, _, _, ok := runtime.Caller(skip)
		if !ok {
			break
		}
		p := runtime.FuncForPC(pc)
		file, line := p.FileLine(0)

		fmt.Printf("skip = %v, pc = %v\n", skip, pc)
		fmt.Printf("  file = %v, line = %d\n", file, line)
		fmt.Printf("  entry = %v\n", p.Entry())
		fmt.Printf("  name = %v\n", p.Name())
	}

	fmt.Println("-------------------------")

	pc := make([]uintptr, 1024)
	for skip := 0; ; skip++ {
		n := runtime.Callers(skip, pc)
		if n <= 0 {
			break
		}
		fmt.Printf("skip = %v, pc = %v\n", skip, pc[:n])
		for j := 0; j < n; j++ {
			p := runtime.FuncForPC(pc[j])
			file, line := p.FileLine(0)

			fmt.Printf("  skip = %v, pc = %v\n", skip, pc[j])
			fmt.Printf("    file = %v, line = %d\n", file, line)
			fmt.Printf("    entry = %v\n", p.Entry())
			fmt.Printf("    name = %v\n", p.Name())
		}
		break
	}
}

输出:

skip = 0, pc = 8277
  file = /项目路径/src/test/main.go, line = 12
  entry = 8224
  name = main.fun1
skip = 1, pc = 8219
  file = /项目路径/src/test/main.go, line = 8
  entry = 8192
  name = main.main
skip = 2, pc = 80579
  file = /usr/local/go/src/runtime/proc.go, line = 16
  entry = 80336
  name = runtime.main
skip = 3, pc = 231265
  file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232
  entry = 231264
  name = runtime.goexit
-------------------------
skip = 0, pc = [32278 8634 8219 80579 231265]
  skip = 0, pc = 32278
    file = /usr/local/go/src/runtime/extern.go, line = 134
    entry = 32192
    name = runtime.Callers
  skip = 0, pc = 8634
    file = /项目路径/src/test/main.go, line = 12
    entry = 8224
    name = main.fun1
  skip = 0, pc = 8219
    file = /项目路径/src/test/main.go, line = 8
    entry = 8192
    name = main.main
  skip = 0, pc = 80579
    file = /usr/local/go/src/runtime/proc.go, line = 16
    entry = 80336
    name = runtime.main
  skip = 0, pc = 231265
    file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232
    entry = 231264
    name = runtime.goexit

根据测试, 若是是无效 pc (好比0), runtime.Func.FileLine 通常会输出当前函数的开始行号. 不过在实践中, 通常会用 runtime.Caller 获取文件名和行号信息, runtime.Func.FileLine 不多用到(如何独立获取pc参数?).

定制的 CallerName 函数

基于前面的几个函数, 咱们能够方便的定制一个 CallerName 函数. 函数 CallerName 返回调用者的函数名/文件名/行号等用户友好的信息.

函数实现以下:

package main

import (
	"fmt"
	"runtime"
)

func main() {
	for skip := 0; ; skip++ {
		name, file, line, ok := CallerName(skip)
		if !ok {
			break
		}
		fmt.Printf("skip = %v\n", skip)
		fmt.Printf("  file = %v, line = %d\n", file, line)
		fmt.Printf("  name = %v\n", name)
	}
}

func CallerName(skip int) (name, file string, line int, ok bool) {
	var pc uintptr
	if pc, file, line, ok = runtime.Caller(skip + 1); !ok {
		return
	}
	name = runtime.FuncForPC(pc).Name()
	return
}

输出:

skip = 0
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 10
  name = main.main
skip = 1
  file = /usr/local/go/src/runtime/proc.go, line = 63
  name = runtime.main
skip = 2
  file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232
  name = runtime.goexit

其中在执行 runtime.Caller 调用时, 参数 skip + 1 用于抵消 CallerName 函数自身的调用.

Go语言中函数的类型

在Go语言中, 除了语言定义的普通函数调用外, 还有闭包函数/init函数/全局变量初始化等不一样的函数调用类型.

为了便于测试不一样类型的函数调用, 咱们包装一个 PrintCallerName 函数. 该函数用于输出调用者的信息.

package main

import (
	"fmt"
	"runtime"
)

var a = PrintCallerName(0, "main.a")
var b = PrintCallerName(0, "main.b")

func init() {
	a = PrintCallerName(0, "main.init.a")
}

func init() {
	b = PrintCallerName(0, "main.init.b")
	func() {
		b = PrintCallerName(0, "main.init.b[1]")
	}()
}

func main() {
	a = PrintCallerName(0, "main.main.a")
	b = PrintCallerName(0, "main.main.b")
	func() {
		b = PrintCallerName(0, "main.main.b[1]")
		func() {
			b = PrintCallerName(0, "main.main.b[1][1]")
		}()
		b = PrintCallerName(0, "main.main.b[2]")
	}()
}

func PrintCallerName(skip int, comment string) bool {
	name, file, line, ok := CallerName(skip + 1)
	if !ok {
		return false
	}
	fmt.Printf("skip = %v, comment = %s\n", skip, comment)
	fmt.Printf("  file = %v, line = %d\n", file, line)
	fmt.Printf("  name = %v\n", name)
	return true
}

func CallerName(skip int) (name, file string, line int, ok bool) {
	var pc uintptr
	if pc, file, line, ok = runtime.Caller(skip + 1); !ok {
		return
	}
	name = runtime.FuncForPC(pc).Name()
	return
}

输出:

skip = 0, comment = main.a
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 8
  name = main.init
skip = 0, comment = main.b
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 9
  name = main.init
skip = 0, comment = main.init.a
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 12
  name = main.init·1
skip = 0, comment = main.init.b
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 16
  name = main.init·2
skip = 0, comment = main.init.b[1]
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 18
  name = main.func·001
skip = 0, comment = main.main.a
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 23
  name = main.main
skip = 0, comment = main.main.b
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 24
  name = main.main
skip = 0, comment = main.main.b[1]
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 26
  name = main.func·003
skip = 0, comment = main.main.b[1][1]
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 28
  name = main.func·002
skip = 0, comment = main.main.b[2]
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 30
  name = main.func·003

观察输出结果, 能够发现如下几个规律:

  1. 全局变量的初始化调用者为 main.init 函数
  2. 自定义的 init 函数有一个数字后缀, 根据出现的顺序进编号. 好比 main.init·1 和 main.init·2 等.
  3. 闭包函数采用 main.func·001 格式命名, 安装闭包定义结束的位置顺序进编号.

好比如下全局变量的初始化调用者为 main.init 函数:

var a = PrintCallerName(0, "main.a")
var b = PrintCallerName(0, "main.b")

如下两个 init 函数根据出现顺序分别对应 main.init·1 和 main.init·2 :

func init() { // main.init·1
    //
}
func init() { // main.init·2
    //
}

如下三个闭包根据定义结束顺序分别为 001 / 002 / 003 :

func init() {
    func(){
        //
    }() // main.func·001
}

func main() {
    func() {
        func(){
            //
        }() // main.func·002
    }() // main.func·003
}

由于, 这些特殊函数调用方式的存在, 咱们须要进一步完善 CallerName 函数.

改进的 CallerName 函数

两类特殊的调用是 init 类函数调用 和 闭包函数调用.

改进后的 CallerName 函数对 init 类函数调用者统一处理为 init 函数. 将闭包函数调用这处理为调用者的函数名.

func CallerName(skip int) (name, file string, line int, ok bool) {
	var (
		reInit    = regexp.MustCompile(`init·\d+$`) // main.init·1
		reClosure = regexp.MustCompile(`func·\d+$`) // main.func·001
	)
	for {
		var pc uintptr
		if pc, file, line, ok = runtime.Caller(skip + 1); !ok {
			return
		}
		name = runtime.FuncForPC(pc).Name()
		if reInit.MatchString(name) {
			name = reInit.ReplaceAllString(name, "init")
			return
		}
		if reClosure.MatchString(name) {
			skip++
			continue
		}
		return
	}
	return
}

输出:

skip = 0, comment = main.a
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 9
  name = main.init
skip = 0, comment = main.b
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 10
  name = main.init
skip = 0, comment = main.init.a
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 13
  name = main.init
skip = 0, comment = main.init.b
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 17
  name = main.init
skip = 0, comment = main.init.b[1]
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 20
  name = main.init
skip = 0, comment = main.main.a
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 24
  name = main.main
skip = 0, comment = main.main.b
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 25
  name = main.main
skip = 0, comment = main.main.b[1]
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 32
  name = main.main
skip = 0, comment = main.main.b[1][1]
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 32
  name = main.main
skip = 0, comment = main.main.b[2]
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 32
  name = main.main

CallerName 函数的不足之处

有如下的代码:

func init() {
	myInit("1")
}
func main() {
	myInit("2")
}

var myInit = func(name string) {
	PrintCallerName(0, name+":main.myInit.b")
}

输出:

skip = 0, comment = 1:main.myInit.b
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 10
  name = main.init
skip = 0, comment = 2:main.myInit.b
  file = /Users/zhangyuchen/go/pro/src/test/main.go, line = 13
  name = main.main

从直观上看, myInit闭包函数在执行时, 最好输出 main.myInit 函数名. 可是 main.myInit 只是一个绑定到闭包函数的变量, 而闭包的真正名字是 main.func·???(这里若是用改进以前的CallerName的话,输出是main.func·001). 在运行时是没法获得 main.myInit 这个名字的.

不一样Go程序启动流程

基于函数调用者信息能够很容易的验证各类环境的程序启动流程.

test:

package main

import (
	"fmt"
	"testing"
)

func TestPrintCallerName(t *testing.T) {
	for skip := 0; ; skip++ {
		name, file, line, ok := CallerName(skip)
		if !ok {
			break
		}
		fmt.Printf("skip = %v, name = %v, file = %v, line = %v\n", skip, name, file, line)
	}
	t.Fail()
}

example:

package main

import (
	myMain "."
	"fmt"
)

func Example() {
	for skip := 0; ; skip++ {
		name, file, line, ok := myMain.CallerName(skip)
		if !ok {
			break
		}
		fmt.Printf("skip = %v, name = %v, file = %v, line = %v\n", skip, name, file, line)
	}
	// Output: ?
}

运行 go test , 获得的输出:

=== RUN TestPrintCallerName
skip = 0, name = test.TestPrintCallerName, file = /Users/zhangyuchen/go/pro/src/test/main_test.go, line = 10
skip = 1, name = testing.tRunner, file = /usr/local/go/src/testing/testing.go, line = 447
skip = 2, name = runtime.goexit, file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232
--- FAIL: TestPrintCallerName (0.00s)
=== RUN: Example
--- FAIL: Example (0.00s)
got:
skip = 0, name = test.Example, file = /Users/zhangyuchen/go/pro/src/test/example_test.go, line = 10
skip = 1, name = testing.runExample, file = /usr/local/go/src/testing/example.go, line = 98
skip = 2, name = testing.RunExamples, file = /usr/local/go/src/testing/example.go, line = 36
skip = 3, name = testing.(*M).Run, file = /usr/local/go/src/testing/testing.go, line = 486
skip = 4, name = main.main, file = test/_test/_testmain.go, line = 54
skip = 5, name = runtime.main, file = /usr/local/go/src/runtime/proc.go, line = 63
skip = 6, name = runtime.goexit, file = /usr/local/go/src/runtime/asm_amd64.s, line = 2232
want:
?
FAIL
exit status 1
FAIL	test	0.008s

分析输出数据咱们能够发现, 测试代码和例子代码的启动流程和普通的程序流程都不太同样.

测试代码的启动流程:

  1. runtime.goexit 仍是入口
  2. 可是 runtime.goexit 不在调用 runtime.main 函数, 而是调用 testing.tRunner 函数
  3. testing.tRunner 函数由 go test 命令生成, 用于执行各个测试函数

例子代码的启动流程:

  1. runtime.goexit 仍是入口
  2. 而后 runtime.goexit 调用 runtime.main 函数
  3. 最终 runtime.main 调用go test 命令生成的 main.main 函数, 在 _test/_testmain.go 文件
  4. 而后调用 testing.Main, 改函数执行各个例子函数

另外, 从这个例子咱们能够发现, 咱们本身写的 main.main 函数所在的 main 包也能够被其余包导入. 可是其余包导入以后的 main 包里的 main 函数就再也不是main.main 函数了. 所以, 程序的入口也就不是本身写的 main.main 函数了.

内存使用状况

堆内存

var m runtime.MemStats
	runtime.ReadMemStats(&m)

	format := "%-40s : %d bytes\n"
	fmt.Printf(format, "bytes allocated and still in use", m.HeapAlloc)
	fmt.Printf(format, "bytes obtained from system", m.HeapSys)
	fmt.Printf(format, "bytes in idle spans", m.HeapIdle)
	fmt.Printf(format, "bytes in non-idle span", m.HeapInuse)
	fmt.Printf(format, "bytes released to the OS", m.HeapReleased)
	fmt.Printf(format, "total number of allocated objects", m.HeapObjects)

输出:

bytes allocated and still in use         : 38928 bytes
bytes obtained from system               : 851968 bytes
bytes in idle spans                      : 696320 bytes
bytes in non-idle span                   : 155648 bytes
bytes released to the OS                 : 0 bytes
total number of allocated objects        : 113 bytes

在web页面展现debug信息

router := httprouter.New()
	router.HandlerFunc("GET", "/debug/pprof", pprof.Index)
	router.Handler("GET", "/debug/heap", pprof.Handler("heap"))
	router.Handler("GET", "/debug/goroutine", pprof.Handler("goroutine"))
	router.Handler("GET", "/debug/block", pprof.Handler("block"))
	router.Handler("GET", "/debug/threadcreate", pprof.Handler("threadcreate"))
	// 启动时的命令,好比 bin/debug -a=1
	router.HandlerFunc("GET", "/debug/pprof/cmdline", pprof.Cmdline)
	router.HandlerFunc("GET", "/debug/pprof/symbol", pprof.Symbol)
	router.HandlerFunc("GET", "/debug/pprof/profile", pprof.Profile)
	router.HandlerFunc("GET", "/debug/pprof/trace", pprof.Trace)
	http.ListenAndServe(":8080", router)
相关文章
相关标签/搜索