包含列的索引:通往SQL Server索引级别5的阶梯

原文连接:http://www.sqlservercentral.com/articles/Stairway+Series/72276/sql

包含列的索引:通往SQL Server索引级别5的阶梯数据库

大卫•杜兰特2011/07/13数据库设计

该系列sqlserver

本文是楼梯系列的一部分:SQL Server索引的阶梯性能

索引是数据库设计的基础,并告诉开发人员使用数据库很是了解设计器的意图。不幸的是,当性能问题出现时,索引经常被添加到过后。这里最后是一个简单的系列文章,它应该能让任何数据库专业人员快速“跟上”他们的步伐测试

前面的级别引入了集群和非汇集索引,突出了每一个方面的如下方面:优化

表中的每一行都有一个条目(咱们注意到这个规则的例外状况将在之后的级别中被覆盖)。这些条目老是在索引键序列中。设计

在汇集索引中,索引项是表的实际行。server

在非汇集索引中,条目与数据行分开;并由索引键列和书签值组成,将索引键列映射到表的实际行。排序

前半句是正确的,但不完整。在这个级别中,咱们检查了将附加的列包含到非汇集索引的选项,称为包含列。在第6级检查书签操做时,咱们会看到SQL Server可能会单方面向索引添加一些列。

包括列

非汇集索引中的列,但不是索引键的一部分,被称为包含列。这些列不是键的一部分,所以不影响索引中的条目序列。并且,正如咱们将看到的,它们比键列的开销更少。

在建立非汇集索引时,咱们将分别从键列指定包含的列;如清单5.1所示。

CREATE NONCLUSTERED INDEX FK_ProductID_ ModifiedDate
       ON Sales.SalesOrderDetail (ProductID, ModifiedDate)
       INCLUDE (OrderQty, UnitPrice, LineTotal)

清单5.1:建立包含列的非汇集索引

在本例中,ProductID和ModifiedDate是索引键列,OrderQty、UnitPrice和LineTotal是包含的列。

若是咱们没有在上面的SQL语句中指定INCLUDE子句,那么结果的索引应该是这样的:

ProductID ModifiedDate书签

 

Page n:

707         2004/07/25        =>  
707         2004/07/26        =>  
707         2004/07/26        =>  
707         2004/07/26        =>  
707         2004/07/27        =>  
707         2004/07/27        =>  
707         2004/07/27        =>  
707         2004/07/28        =>  
707         2004/07/28        =>  
707         2004/07/28        =>  
707         2004/07/28        =>  
707         2004/07/28        =>  
707         2004/07/28        =>  

Page n+1:

707         2004/07/29        =>  
707         2004/07/31        =>  
707         2004/07/31        =>  
707         2004/07/31        =>  
708         2001/07/01        =>  
708         2001/07/01        =>  
708         2001/07/01        =>  
708         2001/07/01        =>  
708         2001/07/01        =>  
708         2001/07/01        =>  
708         2001/07/01        =>  
708         2001/07/01        =>  
708         2001/07/01        =>  
708         2001/07/01        =>  

然而,已经告诉SQL Server包括OrderQty、UnitPrice和LineTotal列,索引看起来是这样的:

--- --- --- --- --- --- --- --- --- --- --- --

产品修改日期

Page n-1:

707         2004/07/29        1           34.99       34.99       =>  
707         2004/07/31        1           34.99       34.99       =>  
707         2004/07/31        3           34.99      104.97       =>  
707         2004/07/31        1           34.99       34.99       =>  
708         2001/07/01        5           20.19      100.95       =>  

Page n:

708         2001/07/01        1           20.19       20.19       =>  
708         2001/07/01        1           20.19       20.19       =>  
708         2001/07/01        2           20.19       40.38       =>  
708         2001/07/01        1           20.19       20.19       =>  
708         2001/07/01        2           20.19       40.38       =>  

708         2001/12/01        7           20.19      141.33       =>  
708         2001/12/01        1           20.19       20.19       =>  
708         2002/01/01        1           20.19       20.19       =>  
708         2002/01/01        1           20.19       20.19       =>  
708         2002/01/01        1           20.19       20.19       =>  

Page n+1:

708         2002/01/01        2           20.19       40.38       =>  
708         2002/01/01        5           20.19      100.95       => 
 
708         2002/02/01        1           20.19       20.19       =>  
708         2002/02/01        1           20.19       20.19       =>  
708         2002/02/01        2           20.19       40.38       =>  

检查这个索引的内容,很明显,这些行是由索引键列排序的。例如,在2002年1月1日修改后的产品708(以粗体显示)的5行,在索引中是连续的,就像其余全部ProductID / ModifiedDate组合中的行同样。

你可能会问“为何要包含列呢?”为何不直接向索引键添加OrderQty、UnitPrice和LineTotal ?“在索引中有这些列有几个优势,但索引键没有,好比:

不属于索引键的列不会影响索引内条目的位置。这反过来下降了在索引中使用它们的开销。例如,若是行中的ProductID或ModifiedDate值被修改,那么该行的条目必须在索引中从新定位。可是,若是在行中的unit订价evalue被修改,那么索引项仍然须要更新,但它不须要移动。

在索引中定位一个条目所需的工做量更少。

指数的大小将会稍微小一些。

索引的数据分布统计数据将更容易维护。

当咱们查看索引的内部结构以及SQL Server维护的一些额外信息以优化查询性能时,这些优点在之后的级别中会更有意义。

决定一个索引列是不是索引键的一部分,或者仅仅是一个包含的列,并非您所要作的最重要的索引决定。也就是说,在SELECT列表中常常出现的列,而不是查询的WHERE子句中最优的列在索引的列中。

成为一种覆盖指数

在第4级,咱们与AdventureWorksdatabase的设计人员达成协议,他们决定让SalesOrderID / SalesOrderDetailID为SalesOrderDetail表的集群索引。针对此表的大多数查询将请求按销售订单号排序或分组的数据。可是,一些查询,可能来自仓库人员,将须要在产品序列中的信息。这些查询将从清单5.1中显示的索引中获益。

为了说明在该索引中包含包含列的潜在好处,咱们将查看针对SalesOrderDetailtable的两个查询,每一个查询将执行三次,以下:

运行1:没有非汇集索引

运行2:使用包含不包含列的非汇集索引(只有两个键列)

运行3:使用清单5.1中定义的非汇集索引

正如咱们在之前的级别中所作的那样,咱们再次使用读做为主要度量,可是咱们也使用SQL Server Management Studio的“显示实际执行计划”选项来查看每一个执行的计划。这将给咱们一个额外的度量:在非读取活动上花费的工做量的百分比,例如在读入内存以后匹配相关数据。这使咱们更好地理解了查询的总成本。

测试第一个查询:活动总数按产品

咱们的第一个查询,如清单5.2所示,是一个为特定产品提供活动总数的查询。

SELECT  ProductID ,
        ModifiedDate ,
        SUM(OrderQty) AS 'No of Items' ,
        AVG(UnitPrice) 'Avg Price' ,
        SUM(LineTotal) 'Total Value'
FROM    Sales.SalesOrderDetail
WHERE   ProductID = 888
GROUP BY ProductID ,
        ModifiedDate ;

清单5.2:“产品的活动总数”查询

由于索引能够影响查询的性能,但不能影响结果;针对这三种不一样的索引方案执行此查询老是会产生如下行集:

ProductID修改日期不为全部行Avg价格总值

----------- ------------    ----------- -----------------------------
888         2003-07-01      16          602.346           9637.536000
888         2003-08-01      13          602.346           7830.498000
888         2003-09-01      19          602.346           11444.574000
888        2003-10-01       2           602.346           1204.692000
888         2003-11-01      17          602.346           10239.882000
888         2003-12-01      4           602.346           2409.384000
888         2004-05-01      10          602.346           6023.460000
888         2004-06-01      2           602.346           1204.692000

8行输出从表中的39个“ProductID = 888”行聚合到每一个有一个或多个“ProductID = 888”销售的日期的输出行。进行测试的基本方案如清单5.3所示。在运行任何查询以前,确保运行SET STATISTICS IO ON。

IF EXISTS ( SELECT  1
            FROM    sys.indexes
            WHERE   name = 'FK_ProductID_ModifiedDate'
                    AND OBJECT_ID = OBJECT_ID('Sales.SalesOrderDetail') ) 
    DROP INDEX Sales.SalesOrderDetail.FK_ProductID_ModifiedDate ;
GO

 

——运行1:在这里执行清单5.2(没有非汇集索引)

CREATE NONCLUSTERED INDEX FK_ProductID_ModifiedDate
ON Sales.SalesOrderDetail (ProductID, ModifiedDate) ;

 

——运行2:在这里从新执行清单5.2(非集群索引,不包含任何内容)

IF EXISTS ( SELECT  1
            FROM    sys.indexes
            WHERE   name = 'FK_ProductID_ModifiedDate'
                    AND OBJECT_ID = OBJECT_ID('Sales.SalesOrderDetail') ) 
    DROP INDEX Sales.SalesOrderDetail.FK_ProductID_ModifiedDate ;
GO
 
CREATE NONCLUSTERED INDEX FK_ProductID_ModifiedDate
ON Sales.SalesOrderDetail (ProductID, ModifiedDate)
INCLUDE (OrderQty, UnitPrice, LineTotal) ;

 

——运行3:在这里从新执行清单5.2(包含包含的非汇集索引)

清单5.3:测试“产品的活动总数”查询

对每一个索引方案执行查询所需的相对工做如表5.1所示。

1:运行

没有非汇集索引

表“SalesOrderDetail”。扫描计数1,逻辑读1238。

非阅读活动:8%。

运行2:

索引-不包括列

表“SalesOrderDetail”。扫描计数1,逻辑读131。

非阅读活动:0%。

运行3:

包括列

表“SalesOrderDetail”。扫描计数1,逻辑读3。

非阅读活动:1%。

表5.1:使用不一样的非汇集索引运行第一个查询的结果三次

从这些结果能够看出:

运行1须要对SalesOrderDetail表进行完整的扫描;每一行都必须阅读和检查,以肯定是否应该参与结果。

Run 2使用非汇集索引快速查找39个请求行的书签,但它必须从表中逐个检索这些行。

运行3在非汇集索引中找到所需的全部内容,并在ProductID内最有利的序列中进行修改。它迅速跳到第一个请求的条目,读了39个连续的条目,在读取的每一个条目上作汇总计算,而后完成了。

测试第二个查询:基于日期的活动总数

咱们的第二个查询与第一个查询彻底相同,只是在WHERE子句中发生了更改。这一次,仓库是根据日期请求信息,而不是基于产品。咱们必须在最右的搜索键栏上进行过滤,修改日期;而不是最左边的列,ProductID。新的查询如清单5.4所示。

 

SELECT  ModifiedDate ,
        ProductID ,
        SUM(OrderQty) 'No of Items' ,
        AVG(UnitPrice) 'Avg Price' ,
        SUM(LineTotal) 'Total Value'
FROM    Sales.SalesOrderDetail
WHERE   ModifiedDate = '2003-10-01'
GROUP BY ModifiedDate ,
        ProductID ;

清单5.4:“按日期执行的活动总数”查询

产生的行集,部分是:

产品的修改日期不包括价格总额

----------- ------------    ----------- --------------------- ----------------
                                   :
                                   :
782         2003-10-01      62          1430.9937             86291.624000
783         2003-10-01      72          1427.9937             100061.564000
784         2003-10-01      52          1376.994              71603.688000
792         2003-10-01      12          1466.01               17592.120000
793         2003-10-01      46          1466.01               67436.460000
794         2003-10-01      37          1466.01               54242.370000
795         2003-10-01      22          1466.01               32252.220000
                                   :
                                   :
(164 row(s) affected)

WHERE子句将表过滤到1492行;在分组时,生成了164行输出。

要运行测试,请遵循清单5.3中描述的相同方案,可是使用清单5.4中的新查询。结果是针对每一个索引方案执行查询所需的相对工做,如表5.2所示。

1:运行

没有非汇集索引

表“SalesOrderDetail”。扫描计数1,逻辑读1238。

非阅读活动:10%。

运行2:

索引-不包括列

表“SalesOrderDetail”。扫描计数1,逻辑读1238。

非阅读活动:10%。

运行3:

包括列

表“SalesOrderDetail”。扫描计数1,逻辑读761。

非阅读活动:8%。

表2:使用不一样的非汇集索引运行第二个查询的结果

第一次和第二次测试都产生了相同的计划;一个完整的扫描详细信息表。因为第4级中详细讨论的缘由,WHERE子句没有足够的选择性从非覆盖索引中获益。并且,包含任何一个组的行分布在整个表中。在读取表时,每一行必须与组相匹配;以及消耗处理器时间和内存的操做。

第三个测试在非汇集索引中找到了它所须要的一切;可是,与前面的查询不一样,它没有发现索引中相邻的行。在索引中,包含每一个组的行是连续的;但这些组织自己分散在指数的长度上。所以,SQL Server扫描索引。

扫描索引而不是表格有两个优势:

该指数小于表,要求更少的读数。

这些行已经分组,须要更少的非读活动。

结论

包含的列使非汇集索引可以成为各类查询的索引,从而提升这些查询的性能;有时会很显著。包含的列增长了索引的大小,但在开销方面却没有增长。任什么时候候建立非汇集索引,尤为是在外键列上,都要问本身:“在这个索引中应该包含哪些额外的列?”

本文是通往SQL Server索引楼梯的楼梯的一部分

相关文章
相关标签/搜索