JavaShuo
栏目
标签
GAN Based Sample Simulation for SEM-Image Super Resolution
时间 2021-01-15
原文
原文链接
摘要: 我们建议采用图像超分辨率来加速扫描电子显微镜(SEM)的采集速度。 该过程可以通过以较低分辨率收集图像,然后使用图像超分辨率算法对收集的图像进行放大来完成。 然而,由于物理因素的影响,不同分辨率的SEM图像不仅在尺度上发生变化,而且在噪声水平和物理畸变方面也发生了变化。因此,很难获得训练数据集。 为了解决这个问题,我们设计了一个生成对抗网络(GAN)来拟合SEM图像的噪声,然后从
>>阅读原文<<
相关文章
1.
An Attention-Based Approach for Single Image Super Resolution
2.
ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution
3.
Convolutional Sparse Coding for Cmage Super-resolution
4.
JSI-GAN: GAN-Based Joint Super-Resolution and Inverse Tone-Mapping with Pixel-Wise Task-Specific Fil
5.
Time-Frequency Networks For Audio Super-Resolution
6.
Image Super-Resolution via Attention based Back Projection Networks
7.
KernelGAN: Blind Super Resolution Kernel Estimation using an Internal-GAN
8.
Residual Dense Network for Image Super-Resolution
9.
Deep Back-Projection Networks For Super-Resolution
10.
Unsupervised Learning for Real-World Super-Resolution
更多相关文章...
•
Swift for 循环
-
Swift 教程
•
Scala for循环
-
Scala教程
•
RxJava操作符(三)Filtering
•
Flink 数据传输及反压详解
相关标签/搜索
based
simulation
resolution
sample
gan
super
7.super
for...of
69.for
for..loop
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab4.0备份还原
2.
openstack
3.
深入探讨OSPF环路问题
4.
代码仓库-分支策略
5.
Admin-Framework(八)系统授权介绍
6.
Sketch教程|如何访问组件视图?
7.
问问自己,你真的会用防抖和节流么????
8.
[图]微软Office Access应用终于启用全新图标 Publisher已在路上
9.
微软准备淘汰 SHA-1
10.
微软准备淘汰 SHA-1
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
An Attention-Based Approach for Single Image Super Resolution
2.
ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution
3.
Convolutional Sparse Coding for Cmage Super-resolution
4.
JSI-GAN: GAN-Based Joint Super-Resolution and Inverse Tone-Mapping with Pixel-Wise Task-Specific Fil
5.
Time-Frequency Networks For Audio Super-Resolution
6.
Image Super-Resolution via Attention based Back Projection Networks
7.
KernelGAN: Blind Super Resolution Kernel Estimation using an Internal-GAN
8.
Residual Dense Network for Image Super-Resolution
9.
Deep Back-Projection Networks For Super-Resolution
10.
Unsupervised Learning for Real-World Super-Resolution
>>更多相关文章<<