处理百万级以上的数据提升查询速度的方法:
1.应尽可能避免在 where 子句中使用!=或<>操做符,不然将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽可能避免全表扫描,首先应考虑在 where 及 order by 涉及的列上创建索引。
3.应尽可能避免在 where 子句中对字段进行 null 值判断,不然将致使引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
能够在num上设置默认值0,确保表中num列没有null值,而后这样查询:
select id from t where num=0
4.应尽可能避免在 where 子句中使用 or 来链接条件,不然将致使引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
能够这样查询:
select id from t where num=10
union all
select id from t where num=20
5.下面的查询也将致使全表扫描:(不能前置百分号)
select id from t where name like ‘%abc%’
若要提升效率,能够考虑全文检索。
6.in 和 not in 也要慎用,不然会致使全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
8.应尽可能避免在 where 子句中对字段进行表达式操做,这将致使引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改成:
select id from t where num=100*2
9.应尽可能避免在where子句中对字段进行函数操做,这将致使引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=’abc’–name以abc开头的id
select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id
应改成:
select id from t where name like ‘abc%’
select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′
10.不要在 where 子句中的“=”左边进行函数、算术运算或其余表达式运算,不然系统将可能没法正确使用索引。
11.在使用索引字段做为条件时,若是该索引是复合索引,那么必须使用到该索引中的第一个字段做为条件时才能保证系统使用该索引,不然该索引将不会被使 用,而且应尽量的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如须要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,可是会消耗系统资源的,应改为这样:
create table #t(…)
13.不少时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并非全部索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即便在sex上建了索引也对查询效率起不了做用。
15.索引并非越多越好,索引当然能够提升相应的 select 的效率,但同时也下降了 insert 及 update 的效率,由于 insert 或 update 时有可能会重建索引,因此怎样建索引须要慎重考虑,视具体状况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。
16.应尽量的避免更新 clustered 索引数据列,由于 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将致使整个表记录的顺序的调整,会耗费至关大的资源。若应用系统须要频繁更新 clustered 索引数据列,那么须要考虑是否应将该索引建为 clustered 索引。
17.尽可能使用数字型字段,若只含数值信息的字段尽可能不要设计为字符型,这会下降查询和链接的性能,并会增长存储开销。这是由于引擎在处理查询和链接时会 逐个比较字符串中每个字符,而对于数字型而言只须要比较一次就够了。
18.尽量的使用 varchar/nvarchar 代替 char/nchar ,由于首先变长字段存储空间小,能够节省存储空间,其次对于查询来讲,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽可能使用表变量来代替临时表。若是表变量包含大量数据,请注意索引很是有限(只有主键索引)。
21.避免频繁建立和删除临时表,以减小系统表资源的消耗。
22.临时表并非不可以使用,适当地使用它们可使某些例程更有效,例如,当须要重复引用大型表或经常使用表中的某个数据集时。可是,对于一次性事件,最好使 用导出表。
23.在新建临时表时,若是一次性插入数据量很大,那么可使用 select into 代替 create table,避免形成大量 log ,以提升速度;若是数据量不大,为了缓和系统表的资源,应先create table,而后insert。
24.若是使用到了临时表,在存储过程的最后务必将全部的临时表显式删除,先 truncate table ,而后 drop table ,这样能够避免系统表的较长时间锁定。
25.尽可能避免使用游标,由于游标的效率较差,若是游标操做的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法以前,应先寻找基于集的解决方案来解决问题,基于集的方法一般更有效。
27.与临时表同样,游标并非不可以使用。对小型数据集使用 FAST_FORWARD 游标一般要优于其余逐行处理方法,尤为是在必须引用几个表才能得到所需的数据时。在结果集中包括“合计”的例程一般要比使用游标执行的速度快。若是开发时 间容许,基于游标的方法和基于集的方法均可以尝试一下,看哪种方法的效果更好。
28.在全部的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每一个语句后向客户端发送 DONE_IN_PROC 消息。
29.尽可能避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
30.尽可能避免大事务操做,提升系统并发能力。
查询速度慢的缘由:
一、没有索引或者没有用到索引(这是查询慢最多见的问题,是程序设计的缺陷)
二、I/O吞吐量小,造成了瓶颈效应。
三、没有建立计算列致使查询不优化。
四、内存不足
五、网络速度慢
六、查询出的数据量过大(能够采用屡次查询,其余的方法下降数据量)
七、锁或者死锁(这也是查询慢最多见的问题,是程序设计的缺陷)
八、sp_lock,sp_who,活动的用户查看,缘由是读写竞争资源。
九、返回了没必要要的行和列
十、查询语句很差,没有优化
能够经过以下方法来优化查询
一、把数据、日志、索引放到不一样的I/O设备上,增长读取速度,之前能够将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提升I/O越重要.
二、纵向、横向分割表,减小表的尺寸(sp_spaceuse)
三、升级硬件
四、根据查询条件,创建索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽可能小,使用字节数小的列建索引好(参照索引的建立),不要对有限的几个值的字段建单一索引如性别字段
五、提升网速;
六、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server? 2000 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 1.5 倍。若是另外安装了全文检索功能,并打算运行 Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。将 SQL Server max server memory 服务器配置选项配置为物理内存的 1.5 倍(虚拟内存大小设置的一半)。
七、增长服务器CPU个数;可是必须明白并行处理串行处理更须要资源例如内存。使用并行仍是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就能够在处理器上运行。例如耽搁查询的排序、链接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载状况决定最优的并行等级,复杂的须要消耗大量的CPU的查询最适合并行处理。可是更新操做UPDATE,INSERT, DELETE还不能并行处理。
八、若是是使用like进行查询的话,简单的使用index是不行的,可是全文索引,耗空间。 like 'a%' 使用索引 like '%a' 不使用索引用 like '%a%' 查询时,查询耗时和字段值总长度成正比,因此不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。
九、DB Server 和APPLication Server 分离;OLTP和OLAP分离
十、分布式分区视图可用于实现数据库服务器联合体。联合体是一组分开管理的服务器,但它们相互协做分担系统的处理负荷。这种经过分区数据造成数据库服务器联合体的机制可以扩大一组服务器,以支持大型的多层 Web 站点的处理须要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件'分区视图')
a、在实现分区视图以前,必须先水平分区表
b、在建立成员表后,在每一个成员服务器上定义一个分布式分区视图,而且每一个视图具备相同的名称。这样,引用分布式分区视图名的查询能够在任何一个成员服务器上运行。系统操做如同每一个成员服务器上都有一个原始表的复本同样,但其实每一个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。
十一、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE. 设置自动收缩日志.对于大的数据库不要设置数据库自动增加,它会下降服务器的性能。 在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:
一、 查询语句的词法、语法检查 www.2cto.com
二、 将语句提交给DBMS的查询优化器
三、 优化器作代数优化和存取路径的优化
四、 由预编译模块生成查询规划
五、 而后在合适的时间提交给系统处理执行
六、 最后将执行结果返回给用户其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。
十二、Commit和rollback的区别 Rollback:回滚全部的事物。 Commit:提交当前的事物. 没有必要在动态SQL里写事物,若是要写请写在外面如: begin tran exec(@s) commit trans 或者将动态SQL 写成函数或者存储过程。
1三、在查询Select语句中用Where字句限制返回的行数,避免表扫描,若是返回没必要要的数据,浪费了服务器的I/O资源,加剧了网络的负担下降性能。若是表很大,在表扫描的期间将表锁住,禁止其余的联接访问表,后果严重。
1四、SQL的注释申明对执行没有任何影响
1五、尽量不使用游标,它占用大量的资源。若是须要row-by-row地执行,尽可能采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。游标能够按照它所支持的提取选项进行分类: 只进 必须按照从第一行到最后一行的顺序提取行。FETCH NEXT 是惟一容许的提取操做,也是默认方式。可滚动性 能够在游标中任何地方随机提取任意行。游标的技术在SQL2000下变得功能很强大,他的目的是支持循环。
有四个并发选项
READ_ONLY:不容许经过游标定位更新(Update),且在组成结果集的行中没有锁。
OPTIMISTIC WITH valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于最大化其处理能力。若是用户试图修改某一行,则此行的当前值会与最后一次提取此行时获取的值进行比较。若是任何值发生改变,则服务器就会知道其余人已更新了此行,并会返回一个错误。若是值是同样的,服务器就执行修改。 选择这个并发选项OPTIMISTIC WITH ROW VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具备某种版本标识符,服务器可用它来肯定该行在读入游标后是否有所更改。
在 SQL Server 中,这个性能由 timestamp 数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。每一个数据库都有一个全局当前时间戳值:@@DBTS。每次以任何方式更改带有 timestamp 列的行时,SQL Server 先在时间戳列中存储当前的 @@DBTS 值,而后增长 @@DBTS 的值。若是某 个表具备 timestamp 列,则时间戳会被记到行级。服务器就能够比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而肯定该行是否已更新。服务器没必要比较全部列的值,只需比较 timestamp 列便可。若是应用程序对没有 timestamp 列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。
SCROLL LOCKS 这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其上放置一个更新锁。若是在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。若是在事务外打开游标,则提取下一行时,锁就被丢弃。所以,每当用户须要彻底的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更新该行。
然而,更新锁并不阻止共享锁,因此它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的 SELECT 语句中指定的锁提示,这些游标并发选项能够生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并能够保持到一个提交或回滚操做以后。若是提交时关闭游标的选项为关,则 COMMIT 语句并不关闭任何打开的游标,并且滚动锁被保留到提交以后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标 SELECT 语句中的锁提示。
锁提示 只读 乐观数值 乐观行版本控制 锁定无提示 未锁定 未锁定 未锁定 更新 NOLOCK 未锁定 未锁定 未锁定 未锁定 HOLDLOCK 共享 共享 共享 更新 UPDLOCK 错误 更新 更新 更新 TABLOCKX 错误 未锁定 未锁定 更新其它 未锁定 未锁定 未锁定 更新 *指定 NOLOCK 提示将使指定了该提示的表在游标内是只读的。
1六、用Profiler来跟踪查询,获得查询所需的时间,找出SQL的问题所在;用索引优化器优化索引
1七、注意UNion和UNion all 的区别。UNION all好
1八、注意使用DISTINCT,在没有必要时不要用,它同UNION同样会使查询变慢。重复的记录在查询里是没有问题的
1九、查询时不要返回不须要的行、列
20、用sp_configure 'query governor cost limit'或者SET QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询以前就扼杀掉。 SET LOCKTIME设置锁的时间
2一、用select top 100 / 10 Percent 来限制用户返回的行数或者SET ROWCOUNT来限制操做的行
2二、在SQL2000之前,通常不要用以下的字句 “IS NULL", " <> ", "!=", "!> ", "! <", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", and "LIKE '%500'",由于他们不走索引全是表扫描。
也不要在WHere字句中的列名加函数,如Convert,substring等,若是必须用函数的时候,建立计算列再建立索引来替代.还能够变通写法:WHERE SUBSTRING(firstname,1,1) = 'm'改成WHERE firstname like 'm%'(索引扫描),必定要将函数和列名分开。而且索引不能建得太多和太大。
NOT IN会屡次扫描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN 来替代,特别是左链接,而Exists比IN更快,最慢的是NOT操做.若是列的值含有空,之前它的索引不起做用,如今2000的优化器可以处理了。相同的是IS NULL,“NOT", "NOT EXISTS", "NOT IN"能优化她,而” <> ”等仍是不能优化,用不到索引。
2三、使用Query Analyzer,查看SQL语句的查询计划和评估分析是不是优化的SQL。通常的20%的代码占据了80%的资源,咱们优化的重点是这些慢的地方。
2四、若是使用了IN或者OR等时发现查询没有走索引,使用显示申明指定索引: SELECT * FROM PersonMember (INDEX = IX_Title) WHERE processid IN (‘男’,‘女’)
2五、将须要查询的结果预先计算好放在表中,查询的时候再SELECT。这在SQL7.0之前是最重要的手段。例如医院的住院费计算。
2六、MIN() 和 MAX()能使用到合适的索引
2七、数据库有一个原则是代码离数据越近越好,因此优先选择Default,依次为Rules,Triggers, Constraint(约束如外健主健CheckUNIQUE……,数据类型的最大长度等等都是约束),Procedure.这样不只维护工做小,编写程序质量高,而且执行的速度快。
2八、若是要插入大的二进制值到Image列,使用存储过程,千万不要用内嵌INsert来插入(不知JAVA是否)。由于这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值.存储过程就没有这些动做: 方法:Create procedure p_insert as insert into table(Fp_w_picpath) values (@p_w_picpath), 在前台调用这个存储过程传入二进制参数,这样处理速度明显改善。
2九、Between在某些时候比IN速度更快,Between可以更快地根据索引找到范围。用查询优化器可见到差异。 select * from chineseresume where title in ('男','女') Select * from chineseresume where between '男' and '女' 是同样的。因为in会在比较屡次,因此有时会慢些。
30、在必要是对全局或者局部临时表建立索引,有时可以提升速度,但不是必定会这样,由于索引也耗费大量的资源。他的建立同是实际表同样。
3一、不要建没有做用的事物例如产生报表时,浪费资源。只有在必要使用事物时使用它。
3二、用OR的字句能够分解成多个查询,而且经过UNION 链接多个查询。他们的速度只同是否使用索引有关,若是查询须要用到联合索引,用UNION all执行的效率更高.多个OR的字句没有用到索引,改写成UNION的形式再试图与索引匹配。一个关键的问题是否用到索引。
3三、尽可能少用视图,它的效率低。对视图操做比直接对表操做慢,能够用stored procedure来代替她。特别的是不要用视图嵌套,嵌套视图增长了寻找原始资料的难度。咱们看视图的本质:它是存放在服务器上的被优化好了的已经产生了查询规划的SQL。对单个表检索数据时,不要使用指向多个表的视图,直接从表检索或者仅仅包含这个表的视图上读,不然增长了没必要要的开销,查询受到干扰.为了加快视图的查询,MsSQL增长了视图索引的功能。
3四、没有必要时不要用DISTINCT和ORDER BY,这些动做能够改在客户端执行。它们增长了额外的开销。这同UNION 和UNION ALL同样的道理。 SELECT top 20 ad.companyname,comid,position,ad.referenceid,worklocation, convert(varchar(10),ad.postDate,120) as postDate1,workyear,degreedescription FROM jobcn_query.dbo.COMPANYAD_query ad where referenceID in('JCNAD00329667','JCNAD132168','JCNAD00337748','JCNAD00338345','JCNAD00333138','JCNAD00303570', 'JCNAD00303569','JCNAD00303568','JCNAD00306698','JCNAD00231935','JCNAD00231933','JCNAD00254567', 'JCNAD00254585','JCNAD00254608','JCNAD00254607','JCNAD00258524','JCNAD00332133','JCNAD00268618', 'JCNAD00279196','JCNAD00268613') order by postdate desc
3五、在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,减小判断的次数
3六、当用SELECT INTO时,它会锁住系统表(sysobjects,sysindexes等等),阻塞其余的链接的存取。建立临时表时用显示申明语句,而不是 select INTO. drop table t_lxh begin tran select * into t_lxh from chineseresume where name = 'XYZ' --commit 在另外一个链接中SELECT * from sysobjects能够看到 SELECT INTO 会锁住系统表,Create table 也会锁系统表(无论是临时表仍是系统表)。因此千万不要在事物内使用它!!!这样的话若是是常常要用的临时表请使用实表,或者临时表变量。
3七、通常在GROUP BY 个HAVING字句以前就能剔除多余的行,因此尽可能不要用它们来作剔除行的工做。他们的执行顺序应该以下最优:select 的Where字句选择全部合适的行,Group By用来分组个统计行,Having字句用来剔除多余的分组。这样Group By 个Having的开销小,查询快.对于大的数据行进行分组和Having十分消耗资源。若是Group BY的目的不包括计算,只是分组,那么用Distinct更快
3八、一次更新多条记录比分屡次更新每次一条快,就是说批处理好
3九、少用临时表,尽可能用结果集和Table类性的变量来代替它,Table 类型的变量比临时表好
40、在SQL2000下,计算字段是能够索引的,须要知足的条件以下:
a、计算字段的表达是肯定的
b、不能用在TEXT,Ntext,Image数据类型
c、必须配制以下选项 ANSI_NULLS = ON, ANSI_PADDINGS = ON, …….
4一、尽可能将数据的处理工做放在服务器上,减小网络的开销,如使用存储过程。存储过程是编译好、优化过、而且被组织到一个执行规划里、且存储在数据库中的 SQL语句,是控制流语言的集合,速度固然快。反复执行的动态SQL,可使用临时存储过程,该过程(临时表)被放在Tempdb中。之前因为SQL SERVER对复杂的数学计算不支持,因此不得不将这个工做放在其余的层上而增长网络的开销。SQL2000支持UDFs,如今支持复杂的数学计算,函数的返回值不要太大,这样的开销很大。用户自定义函数象光标同样执行的消耗大量的资源,若是返回大的结果采用存储过程
4二、不要在一句话里再三的使用相同的函数,浪费资源,将结果放在变量里再调用更快
4三、SELECT COUNT(*)的效率教低,尽可能变通他的写法,而EXISTS快.同时请注意区别: select count(Field of null) from Table 和 select count(Field of NOT null) from Table 的返回值是不一样的。
4四、当服务器的内存够多时,配制线程数量 = 最大链接数+5,这样能发挥最大的效率;不然使用 配制线程数量 <最大链接数启用SQL SERVER的线程池来解决,若是仍是数量 = 最大链接数+5,严重的损害服务器的性能。
4五、按照必定的次序来访问你的表。若是你先锁住表A,再锁住表B,那么在全部的存储过程当中都要按照这个顺序来锁定它们。若是你(不经意的)某个存储过程当中先锁定表B,再锁定表A,这可能就会致使一个死锁。若是锁定顺序没有被预先详细的设计好,死锁很难被发现
4六、经过SQL Server Performance Monitor监视相应硬件的负载 Memory: Page Faults / sec计数器若是该值偶尔走高,代表当时有线程竞争内存。若是持续很高,则内存多是瓶颈。 Process:
一、% DPC Time 指在范例间隔期间处理器用在缓延程序调用(DPC)接收和提供服务的百分比。(DPC 正在运行的为比标准间隔优先权低的间隔)。 因为 DPC 是以特权模式执行的,DPC 时间的百分比为特权时间 百分比的一部分。这些时间单独计算而且不属于间隔计算总数的一部 分。这个总数显示了做为实例时间百分比的平均忙时。
二、%Processor Time计数器 若是该参数值持续超过95%,代表瓶颈是CPU。能够考虑增长一个处理器或换一个更快的处理器。
三、% Privileged Time 指非闲置处理器时间用于特权模式的百分比。(特权模式是为操做系统组件和操纵硬件驱动程序而设计的一种处理模式。它容许直接访问硬件和全部内存。另外一种模式为用户模式,它是一种为应用程序、环境分系统和整数分系统设计的一种有限处理模式。操做系统将应用程序线程转换成特权模式以访问操做系统服务)。 特权时间的 % 包括为间断和 DPC 提供服务的时间。特权时间比率高多是因为失败设备产生的大数量的间隔而引发的。这个计数器将平均忙时做为样本时间的一部分显示。
四、% User Time表示耗费CPU的数据库操做,如排序,执行aggregate functions等。若是该值很高,可考虑增长索引,尽可能使用简单的表联接,水平分割大表格等方法来下降该值。 Physical Disk: Curretn Disk Queue Length计数器该值应不超过磁盘数的1.5~2倍。要提升性能,可增长磁盘。 SQLServer:Cache Hit Ratio计数器该值越高越好。若是持续低于80%,应考虑增长内存。 注意该参数值是从SQL Server启动后,就一直累加记数,因此运行通过一段时间后,该值将不能反映系统当前值。
4七、分析select emp_name form employee where salary > 3000 在此语句中若salary是Float类型的,则优化器对其进行优化为Convert(float,3000),由于3000是个整数,咱们应在编程时使用3000.0而不要等运行时让DBMS进行转化。一样字符和整型数据的转换html
原文出处:Asp.net百万级以上数据处理sql