namedtuple
namedtuple是一个函数,它用来建立一个自定义的tuple对象,而且规定了tuple元素的个数,并能够用属性而不是索引来引用tuple的某个元素。
这样一来,咱们用namedtuple能够很方便地定义一种数据类型,它具有tuple的不变性,又能够根据属性来引用,使用十分方便。python
>>> from collections import namedtuple >>> Point = namedtuple('Point', ['x', 'y']) >>> p = Point(1, 2) >>> p.x 1 >>> p.y 2
deque
使用list存储数据时,按索引访问元素很快,可是插入和删除元素就很慢了,由于list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操做的双向列表,适合用于队列和栈:app
>>> from collections import deque >>> q = deque(['a', 'b', 'c']) >>> q.append('x') >>> q.appendleft('y') >>> q deque(['y', 'a', 'b', 'c', 'x'])
deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就能够很是高效地往头部添加或删除元素。函数
defaultdict
使用dict时,若是引用的Key不存在,就会抛出KeyError。若是但愿key不存在时,返回一个默认值,就能够用defaultdict:spa
>>> from collections import defaultdict >>> dd = defaultdict(lambda: 'N/A') >>> dd['key1'] = 'abc' >>> dd['key1'] # key1存在 'abc' >>> dd['key2'] # key2不存在,返回默认值 'N/A'
注意默认值是调用函数返回的,而函数在建立defaultdict对象时传入。
除了在Key不存在时返回默认值,defaultdict的其余行为跟dict是彻底同样的。code
OrderedDict
使用dict时,Key是无序的。在对dict作迭代时,咱们没法肯定Key的顺序。
若是要保持Key的顺序,能够用OrderedDict:对象
>>> from collections import OrderedDict >>> d = dict([('a', 1), ('b', 2), ('c', 3)]) >>> d # dict的Key是无序的 {'a': 1, 'c': 3, 'b': 2} >>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)]) >>> od # OrderedDict的Key是有序的 OrderedDict([('a', 1), ('b', 2), ('c', 3)])
注意,OrderedDict的Key会按照插入的顺序排列,不是Key自己排序:排序
>>> od = OrderedDict() >>> od['z'] = 1 >>> od['y'] = 2 >>> od['x'] = 3 >>> od.keys() # 按照插入的Key的顺序返回 ['z', 'y', 'x']
Counter
Counter是一个简单的计数器,例如,统计字符出现的个数:索引
>>> from collections import Counter >>> c = Counter() >>> for ch in 'programming': ... c[ch] = c[ch] + 1 ... >>> c Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
Counter实际上也是dict的一个子类,上面的结果能够看出,字符'g'、'm'、'r'各出现了两次,其余字符各出现了一次。队列