JavaShuo
栏目
标签
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions
时间 2020-12-30
原文
原文链接
作者: Zeynettin Akkus & Alfiia Galimzianova & Assaf Hoogi & Daniel L. Rubin & Bradley J. Erickson 时间:2017 Abstract 这篇综述的目的是提供关于最近基于深度学习的分割方法对脑部MRI(磁共振成像)定量分析的概述。首先我们看一下最新用来分割脑部解剖结构和脑部损伤的深度学习框架。接下来总结和
>>阅读原文<<
相关文章
1.
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions论文笔记
2.
Deep Learning State of the Art (2020) | MIT Deep Learning Series记录
3.
Embed,encode,attend,predict:the new deep learning formula for state-of-the -art NLP models
4.
Deep learning approach for facial age classification: a survey of the state‑of‑the‑art 论文阅读
5.
论文笔记:A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
6.
Review of Semantic Segmentation with Deep Learning
7.
The Future of Real-Time SLAM and “Deep Learning vs SLAM”
8.
Learning Contextual and Attentive Information for Brain Tumor Segmentation
9.
Pushing state-of-the-art in 3D content understanding
10.
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
更多相关文章...
•
Scala for循环
-
Scala教程
•
Swift for 循环
-
Swift 教程
•
RxJava操作符(七)Conditional and Boolean
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
相关标签/搜索
Deep Learning
for...of
for..of
segmentation
mri
directions
brain
art
learning
state
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
「插件」Runner更新Pro版,帮助设计师远离996
2.
错误 707 Could not load file or assembly ‘Newtonsoft.Json, Version=12.0.0.0, Culture=neutral, PublicKe
3.
Jenkins 2018 报告速览,Kubernetes使用率跃升235%!
4.
TVI-Android技术篇之注解Annotation
5.
android studio启动项目
6.
Android的ADIL
7.
Android卡顿的检测及优化方法汇总(线下+线上)
8.
登录注册的业务逻辑流程梳理
9.
NDK(1)创建自己的C/C++文件
10.
小菜的系统框架界面设计-你的评估是我的决策
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions论文笔记
2.
Deep Learning State of the Art (2020) | MIT Deep Learning Series记录
3.
Embed,encode,attend,predict:the new deep learning formula for state-of-the -art NLP models
4.
Deep learning approach for facial age classification: a survey of the state‑of‑the‑art 论文阅读
5.
论文笔记:A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
6.
Review of Semantic Segmentation with Deep Learning
7.
The Future of Real-Time SLAM and “Deep Learning vs SLAM”
8.
Learning Contextual and Attentive Information for Brain Tumor Segmentation
9.
Pushing state-of-the-art in 3D content understanding
10.
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
>>更多相关文章<<