Keras函数记录

预处理

直接从文件生成图片数据

  ImageDataGenerator,循环生成图片,在重复生成图片以前,会把全部图片都遍历一遍。并且若是图片总量不是生成批量的倍数的话,在生成重复图片的前一次的批量是不完整的。spa

import tensorflow as tf
from tensorflow import keras 
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt

datagen = ImageDataGenerator(   #定义生成图片的模式,添加各类变换等,都是在范围内随机
    rotation_range=40,          #图片旋转的范围        
    width_shift_range=0.2,      #图片水平位移的范围
    height_shift_range=0.2,     #图片垂直位移的范围
    shear_range=0.2,            #图片变倾斜的角度
    zoom_range=0.2,             #图片缩放的范围
    horizontal_flip=True,       #50%概率水平镜像
    fill_mode='nearest')         
gener = datagen.flow_from_directory(        #图片数据生成器
    'D:/Datasets/dogs-vs-cats/train/test',  #生成路径。这个文件夹中应该包括各个类别的图片,且每类图片保存在单独的文件夹中
    target_size = (150,150),                #生成图片的尺寸
    batch_size=1,                           #每次生成多少图片数据
    class_mode='binary')                    #生成图片的标签格式,这里只有两类,因此为二元标签,一个标量0或1
for i,j in gener:#生成的是:图片,标签
    i/=255.
    print(j)
    plt.imshow(i[0])
    plt.show() 
相关文章
相关标签/搜索