1. 设置消息尺寸最大值sql
def main(args: Array[String]) { System.setProperty("spark.akka.frameSize", "1024") }
2.与yarn结合时设置队列shell
val conf=new SparkConf().setAppName("WriteParquet") conf.set("spark.yarn.queue","wz111") val sc=new SparkContext(conf)
3.运行时使用yarn分配资源,并设置--num-executors参数缓存
nohup /home/SASadm/spark-1.4.1-bin-hadoop2.4/bin/spark-submit --name mergePartition --class main.scala.week2.mergePartition --num-executors 30 --master yarn mergePartition.jar >server.log 2>&1 &
4.读取impala的parquet,对String串的处理app
sqlContext.setConf("spark.sql.parquet.binaryAsString","true")
5.parquetfile的写oop
case class ParquetFormat(usr_id:BigInt , install_ids:String ) val appRdd=sc.textFile("hdfs://").map(_.split("\t")).map(r=>ParquetFormat(r(0).toLong,r(1))) sqlContext.createDataFrame(appRdd).repartition(1).write.parquet("hdfs://")
6.parquetfile的读spa
val parquetFile=sqlContext.read.parquet("hdfs://") parquetFile.registerTempTable("install_running") val data=sqlContext.sql("select user_id,install_ids from install_running") data.map(t=>"user_id:"+t(0)+" install_ids:"+t(1)).collect().foreach(println)
7.写文件时,将全部结果聚集到一个文件scala
repartition(1)
8.若是重复使用的rdd,使用cache缓存code
cache()
9.spark-shell 添加依赖包orm
spark-1.4.1-bin-hadoop2.4/bin/spark-shell local[4] --jars code.jar
10.spark-shell使用yarn模式,并使用队列server
spark-1.4.1-bin-hadoop2.4/bin/spark-shell --master yarn-client --queue wz111