Python进程VS线程

#1.进程和线程 队列: 一、进程之间的通讯: q = multiprocessing.Queue() 二、进程池之间的通讯: q = multiprocessing.Manager().Queue() 三、线程之间的通讯: q = queue.Queue() ##1.功能数据库

  • 进程,可以完成多任务,好比 在一台电脑上可以同时运行多个QQ
  • 线程,可以完成多任务,好比 一个QQ中的多个聊天窗口

##2.定义的不一样安全

  • 进程是系统进行资源分配和调度的一个独立单位.
  • 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程本身基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),可是它可与同属一个进程的其余的线程共享进程所拥有的所有资源.

##3.区别bash

  • 一个程序至少有一个进程,一个进程至少有一个线程.
  • 线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
  • 进程在执行过程当中拥有独立的内存单元,而多个线程共享内存,从而极大地提升了程序的运行效率
  • 线程不可以独立执行,必须依存在进程中

##4.优缺点 线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程正相反。 #2.同步的概念 ##1.多线程开发可能遇到的问题 假设两个线程t1和t2都要对num=0进行增1运算,t1和t2都各对num修改10次,num的最终的结果应该为20。 可是因为是多线程访问,有可能出现下面状况: 在num=0时,t1取得num=0。此时系统把t1调度为”sleeping”状态,把t2转换为”running”状态,t2也得到num=0。而后t2对获得的值进行加1并赋给num,使得num=1。而后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它以前获得的0加1后赋值给num。这样,明明t1和t2都完成了1次加1工做,但结果仍然是num=1。多线程

from threading import Thread
import time

g_num = 0

def test1():
    global g_num
    for i in range(1000000):
        g_num += 1

    print("---test1---g_num=%d"%g_num)

def test2():
    global g_num
    for i in range(1000000):
        g_num += 1

    print("---test2---g_num=%d"%g_num)


p1 = Thread(target=test1)
p1.start()

# time.sleep(3) #取消屏蔽以后 再次运行程序,结果的不一样

p2 = Thread(target=test2)
p2.start()

print("---g_num=%d---"%g_num)
复制代码

运行结果却不是2000000:并发

---g_num=129699---
---test2---g_num=1126024
---test1---g_num=1135562
复制代码

取消屏蔽以后,再次运行结果以下:函数

---test1---g_num=1000000
---g_num=1025553---
---test2---g_num=2000000
复制代码

问题产生的缘由就是没有控制多个线程对同一资源的访问,对数据形成破坏,使得线程运行的结果不可预期。这种现象称为“线程不安全”。 ##2.同步ui

  • 同步就是协同步调,按预约的前后次序进行运行。
  • 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到必定程度时要依靠B的某个结果,因而停下来,示意B运行;B依言执行,再将结果给A;A再继续操做。

##3.解决线程不安全的方法 能够经过线程同步来解决spa

  1. 系统调用t1,而后获取到num的值为0,此时上一把锁,即不容许其余如今操做num
  2. 对num的值进行+1
  3. 解锁,此时num的值为1,其余的线程就可使用num了,并且是num的值不是0而是1
  4. 同理其余线程在对num进行修改时,都要先上锁,处理完后再解锁,在上锁的整个过程当中不容许其余线程访问,就保证了数据的正确性

#3.互斥锁线程

  • 当多个线程几乎同时修改某一个共享数据的时候,须要进行同步控制 线程同步可以保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。
  • 互斥锁为资源引入一个状态:锁定/非锁定。
  • 某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其余线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其余的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操做,从而保证了多线程状况下数据的正确性。 threading模块中定义了Lock类,能够方便的处理锁定:
#建立锁
mutex = threading.Lock()
#锁定
mutex.acquire([blocking])
#释放
mutex.release()
复制代码

其中,锁定方法acquire能够有一个blocking参数。code

  • 若是设定blocking为True,则当前线程会堵塞,直到获取到这个锁为止(若是没有指定,那么默认为True)
  • 若是设定blocking为False,则当前线程不会堵塞
from threading import Thread, Lock
import time
g_num = 0
def test1():
    global g_num
    for i in range(1000000):
        #True表示堵塞 即若是这个锁在上锁以前已经被上锁了,那么这个线程会在这里一直等待到解锁为止 
        #False表示非堵塞,即无论本次调用可以成功上锁,都不会卡在这,而是继续执行下面的代码
        mutexFlag = mutex.acquire(True) 
        if mutexFlag:
            g_num += 1
            mutex.release()

    print("---test1---g_num=%d"%g_num)
def test2():
    global g_num
    for i in range(1000000):
        mutexFlag = mutex.acquire(True) #True表示堵塞
        if mutexFlag:
            g_num += 1
            mutex.release()

    print("---test2---g_num=%d"%g_num)
#建立一个互斥锁
#这个锁默认是未上锁的状态
mutex = Lock()
p1 = Thread(target=test1)
p1.start()
p2 = Thread(target=test2)
p2.start()
print("---g_num=%d---"%g_num)
复制代码

运行结果:

---g_num=19446---
---test1---g_num=1699950
---test2---g_num=2000000
复制代码

加入互斥锁后,运行结果与预期相符。 咱们能够模拟一下卖票的程序:

# Python主要经过标准库中的threading包来实现多线程
import threading  
import time
import os
def doChore():  # 做为间隔 每次调用间隔0.5s
    time.sleep(0.5)
def booth(tid):
    global i
    global lock
    while True:
        lock.acquire()                      # 获得一个锁,锁定
        if i != 0:
            i = i - 1                       # 售票 售出一张减小一张
            print(tid, ':now left:', i)    # 剩下的票数
            doChore()
        else:
            print("Thread_id", tid, " No more tickets")
            os._exit(0)                     # 票售完 退出程序
        lock.release()                      # 释放锁
        doChore()
#全局变量
i = 15                      # 初始化票数
lock = threading.Lock()     # 建立锁
def main():
    # 总共设置了3个线程
    for k in range(3):
        # 建立线程; Python使用threading.Thread对象来表明线程
        new_thread = threading.Thread(target=booth, args=(k,))
        # 调用start()方法启动线程
        new_thread.start()
if __name__ == '__main__':
    main()
复制代码

运行结果:

0 :now left: 14
1 :now left: 13
0 :now left: 12
2 :now left: 11
1 :now left: 10
0 :now left: 9
1 :now left: 8
2 :now left: 7
0 :now left: 6
1 :now left: 5
2 :now left: 4
0 :now left: 3
2 :now left: 2
0 :now left: 1
1 :now left: 0
Thread_id 2  No more tickets
复制代码
  • 上锁解锁过程 当一个线程调用锁的acquire()方法得到锁时,锁就进入“locked”状态。 每次只有一个线程能够得到锁。若是此时另外一个线程试图得到这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁以后,锁进入“unlocked”状态。 线程调度程序从处于同步阻塞状态的线程中选择一个来得到锁,并使得该线程进入运行(running)状态。 锁的好处:
  • 确保了某段关键代码只能由一个线程从头至尾完整地执行 锁的坏处:
  • 阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地降低了
  • 因为能够存在多个锁,不一样的线程持有不一样的锁,并试图获取对方持有的锁时,可能会形成死锁

#4.多线程-非共享数据 对于多线程中全局变量和局部变量是否共享

  • 多线程局部变量
#coding=utf-8
    import threading
    import time

    class MyThread(threading.Thread):
        # 重写 构造方法
        def __init__(self,num,sleepTime):
            threading.Thread.__init__(self)
            self.num = num
            self.sleepTime = sleepTime

        def run(self):
            self.num += 1
            time.sleep(self.sleepTime)
            print('线程(%s),num=%d'%(self.name, self.num))

    if __name__ == '__main__':
        mutex = threading.Lock()
        t1 = MyThread(100,5)
        t1.start()
        t2 = MyThread(200,1)
        t2.start()
复制代码

运行结果:

线程(Thread-2),num=201
线程(Thread-1),num=101
复制代码
  • 多线程全局变量
import threading
from time import sleep
def test(sleepTime):
    num = 1
    sleep(sleepTime)
    num+=1
    print('---(%s)--num=%d'%(threading.current_thread(), num))
if __name__ == '__main__':
    t1 = threading.Thread(target = test,args=(5,))
    t2 = threading.Thread(target = test,args=(1,))

    t1.start()
    t2.start()
复制代码

运行结果:

---(<Thread(Thread-2, started 10876)>)--num=2
---(<Thread(Thread-1, started 7484)>)--num=2
复制代码
  • 在多线程开发中,全局变量是多个线程都共享的数据,而局部变量等是各自线程的,是非共享的

#5.同步应用

  • 多个线程有序执行
from threading import Thread,Lock
from time import sleep
class Task1(Thread):
    def run(self):
        while True:
            if lock1.acquire():
                print("------Task 1 -----")
                sleep(0.5)
                lock2.release()
class Task2(Thread):
    def run(self):
        while True:
            if lock2.acquire():
                print("------Task 2 -----")
                sleep(0.5)
                lock3.release()
class Task3(Thread):
    def run(self):
        while True:
            if lock3.acquire():
                print("------Task 3 -----")
                sleep(0.5)
                lock1.release()
#使用Lock建立出的锁默认没有“锁上”
lock1 = Lock()
#建立另一把锁,而且“锁上”
lock2 = Lock()
lock2.acquire()
#建立另一把锁,而且“锁上”
lock3 = Lock()
lock3.acquire()
t1 = Task1()
t2 = Task2()
t3 = Task3()
t1.start()
t2.start()
t3.start()
复制代码

运行结果:

------Task 1 -----
------Task 2 -----
------Task 3 -----
------Task 1 -----
------Task 2 -----
------Task 3 -----
------Task 1 -----
------Task 2 -----
------Task 3 -----
------Task 1 -----
------Task 2 -----
------Task 3 -----
------Task 1 -----
------Task 2 -----
------Task 3 -----
------Task 1 -----
------Task 2 -----
------Task 3 -----
------Task 1 -----
------Task 2 -----
------Task 3 -----
...........`
复制代码
  • 可使用互斥锁完成多个任务,有序的进程工做,这就是线程的同步

#6.生产者与消费者模式

  • Python的Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语(能够理解为原子操做,即要么不作,要么就作完),可以在多线程中直接使用。可使用队列来实现线程间的同步。
  • 用FIFO队列实现上述生产者与消费者问题的代码以下:
import threading,time
from queue import Queue
class Producer(threading.Thread):
    def run(self):
        global queue
        count = 0
        while True:
            if queue.qsize() < 1000:
                for i in range(100):
                    count = count +1
                    msg = '生成产品'+str(count)
                    queue.put(msg)
                    print(msg)
            time.sleep(0.5)
class Consumer(threading.Thread):
    def run(self):
        global queue
        while True:
            if queue.qsize() > 100:
                for i in range(3):
                    msg = self.name + '消费了 '+queue.get()
                    print(msg)
            time.sleep(1)
if __name__ == '__main__':
    queue = Queue()
    for i in range(500):
        queue.put('初始产品'+str(i))
    for i in range(2):
        p = Producer()
        p.start()
    for i in range(5):
        c = Consumer()
        c.start()
复制代码

运行结果:

生成产品1
生成产品2
生成产品1
生成产品3
生成产品2
生成产品4
Thread-3消费了 初始产品0
生成产品3
生成产品5
Thread-3消费了 初始产品1
生成产品4
生成产品6
Thread-4消费了 初始产品2
Thread-3消费了 初始产品3
生成产品5
生成产品7
Thread-4消费了 初始产品4
生成产品6
生成产品8
Thread-5消费了 初始产品5
Thread-4消费了 初始产品6
............
复制代码

此时就出现生产者与消费者的问题 ##1.Queue的说明 1.对于Queue,在多线程通讯之间扮演重要的角色 2.添加数据到队列中,使用put()方法 3.从队列中取数据,使用get()方法 4.判断队列中是否还有数据,使用qsize()方法 ##2.生产者消费者模式的说明

  • 使用生产者和消费者模式的缘由 在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发当中,若是生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。一样的道理,若是消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题因而引入了生产者和消费者模式。
  • 生产者消费者模式 生产者消费者模式是经过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通信,而经过阻塞队列来进行通信,因此生产者生产完数据以后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就至关于一个缓冲区,平衡了生产者和消费者的处理能力。这个阻塞队列就是用来给生产者和消费者解耦的。 ##3.ThreadLocal 在多线程环境下,每一个线程都有本身的数据。一个线程使用本身的局部变量比使用全局变量好,由于局部变量只有线程本身能看见,不会影响其余线程,而全局变量的修改必须加锁。 ###1.使用函数传参的方法
def process_student(name):
    std = Student(name)
    # std是局部变量,可是每一个函数都要用它,所以必须传进去:
    do_task_1(std)
    do_task_2(std)
def do_task_1(std):
    do_subtask_1(std)
    do_subtask_2(std)
def do_task_2(std):
    do_subtask_2(std)
    do_subtask_2(std)
复制代码

说明:用局部变量也有问题,由于每一个线程处理不一样的Student对象,不能共享。 ###2.使用全局字典的方法

import threading
# 建立字典对象:
myDict={}
def process_student():
    # 获取当前线程关联的student:
    std = myDict[threading.current_thread()]
    print('Hello, %s (in %s)' % (std, threading.current_thread().name))
def process_thread(name):
    # 绑定ThreadLocal的student:
    myDict[threading.current_thread()] = name
    process_student()
t1 = threading.Thread(target=process_thread, args=('yongGe',), name='Thread-A')
t2 = threading.Thread(target=process_thread, args=('老王',), name='Thread-B')
t1.start()
t2.start()
复制代码

运行结果;

Hello, yongGe (in Thread-A)
Hello, 老王 (in Thread-B)
复制代码

这种方式理论上是可行的,它最大的优势是消除了std对象在每层函数中的传递问题,可是,每一个函数获取std的代码有点low。 ###3.使用ThreadLocal的方法

import threading
# 建立全局ThreadLocal对象:
local_school = threading.local()
def process_student():
    # 获取当前线程关联的student:
    std = local_school.student
    print('Hello, %s (in %s)' % (std, threading.current_thread().name))
def process_thread(name):
    # 绑定ThreadLocal的student:
    local_school.student = name
    process_student()
t1 = threading.Thread(target=process_thread, args=('erererbai',), name='Thread-A')
t2 = threading.Thread(target=process_thread, args=('老王',), name='Thread-B')
t1.start()
t2.start()
复制代码

运行结果:

Hello, erererbai (in Thread-A)
Hello, 老王 (in Thread-B)
复制代码

说明: 全局变量local_school就是一个ThreadLocal对象,每一个Thread对它均可以读写student属性,但互不影响。你能够把local_school当作全局变量,但每一个属性如local_school.student都是线程的局部变量,能够任意读写而互不干扰,也不用管理锁的问题,ThreadLocal内部会处理。 能够理解为全局变量local_school是一个dict,不但能够用local_school.student,还能够绑定其余变量,如local_school.teacher等等。 ThreadLocal最经常使用的地方就是为每一个线程绑定一个数据库链接,HTTP请求,用户身份信息等,这样一个线程的全部调用到的处理函数均可以很是方便地访问这些资源。

  • 一个ThreadLocal变量虽然是全局变量,但每一个线程都只能读写本身线程的独立副本,互不干扰。ThreadLocal解决了参数在一个线程中各个函数之间互相传递的问题
相关文章
相关标签/搜索