O(n)求数组中第k大的元素——堆排序

建堆:O(n) 循环

询问:O(logn)im

建堆复杂度的证实:img

首先这个循环是从i = headsize/2 -> 1,也就是说这是一个bottom-up的建堆。因而,有1/2的元素向下比较了一次,有1/4的向下比较了两次,1/8的,向下比较了3次,......,1/2^k的向下比较了k次,其中1/2^k <= 1, k 约等于lg(n)。因而就有总的比较量:di

T = (\sum_{k = 1}^{lg(n)}{{1 \over {2^k}} \times k} ) * ntime

令 S = \sum_{k = 1}^{lg(n)}{{1 \over {2^k}} \times k}

1/2 S = \sum_{k = 1}^{lg(n) - 1}{{1 \over {2^{k+1}}} \times k} = {1 \over 4} + {1 \over 8} \times 2 + \cdots + {1 \over {2^{k+1}}} \times k
S - 1/2S = 1/2S = {1 \over 2} + {1 \over 4} + \cdots + {1 \over {2^k}} - {1 \over {2^{k+1}}} \times k到这步就很明显了吧,S <= 2因而T <= 2n => T = O(n).

相关文章
相关标签/搜索