结构风险最小化

传统机器学习方法中普遍采用的经验风险最小化原则在样本数目有限是是不合理的,因为我们需要同时最小化经验风险和置信范围。事实上,在传统的方法中,我们选择学习模型和算法的过程,就是优化置信范围的过程,如果选择的模型比较适合现有的训练样本(h/n值适当),则可以取得比较好的效果。比如在神经网络中,需要根据问题和样本的具体情况来选择不同的网络结构(对应于不同的VC维),然后进行经验风险最小化。在模式识别问题
相关文章
相关标签/搜索