JavaShuo
栏目
标签
论文阅读:Knowledge Graph Convolutional Networks for Recommender Systems
时间 2020-12-24
标签
知识图谱
推荐系统
繁體版
原文
原文链接
1. Motivation 融合吸收side-information是缓解CF冷启动问题的一种解决方案,但是真实场景中的物品属性并不是isolated,它们之间彼此相连。简单的拼接或者非线性交互并不能很好的提取到这些属性之间的关联。为此,我们可以将物品和描述物品的属性放在一张知识图谱里面考虑,并且用GCN的方式吸收邻居的表达,并且随着迭代次数的增加,可以提取到用户“长距离”的兴趣,这在普通MLP中
>>阅读原文<<
相关文章
1.
Knowledge Graph Convolutional Networks for Recommender Systems
2.
Side Information-Knowledge Graph Convolutional Networks for Recommender Systems阅读笔记
3.
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
4.
阅读总结:《Graph Convolutional Neural Networks for Web-Scale Recommender Systems》
5.
Graph Convolutional Neural Networks for Web-Scale Recommender Systems阅读笔记
6.
Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization
7.
论文阅读:《Wide & Deep Learning for Recommender Systems》
8.
阅读笔记--RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
9.
论文阅读:Collaborative Knowledge Base Embedding for Recommender Systems
10.
Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems
更多相关文章...
•
RSS 阅读器
-
RSS 教程
•
PHP 实例 - AJAX RSS 阅读器
-
PHP教程
•
JDK13 GA发布:5大特性解读
•
Scala 中文乱码解决
相关标签/搜索
论文阅读
CV论文阅读
networks
graph
recommender
systems
knowledge
convolutional
外文阅读
论文解读
Thymeleaf 教程
PHP教程
Redis教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Appium入门
2.
Spring WebFlux 源码分析(2)-Netty 服务器启动服务流程 --TBD
3.
wxpython入门第六步(高级组件)
4.
CentOS7.5安装SVN和可视化管理工具iF.SVNAdmin
5.
jedis 3.0.1中JedisPoolConfig对象缺少setMaxIdle、setMaxWaitMillis等方法,问题记录
6.
一步一图一代码,一定要让你真正彻底明白红黑树
7.
2018-04-12—(重点)源码角度分析Handler运行原理
8.
Spring AOP源码详细解析
9.
Spring Cloud(1)
10.
python简单爬去油价信息发送到公众号
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Knowledge Graph Convolutional Networks for Recommender Systems
2.
Side Information-Knowledge Graph Convolutional Networks for Recommender Systems阅读笔记
3.
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
4.
阅读总结:《Graph Convolutional Neural Networks for Web-Scale Recommender Systems》
5.
Graph Convolutional Neural Networks for Web-Scale Recommender Systems阅读笔记
6.
Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization
7.
论文阅读:《Wide & Deep Learning for Recommender Systems》
8.
阅读笔记--RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
9.
论文阅读:Collaborative Knowledge Base Embedding for Recommender Systems
10.
Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems
>>更多相关文章<<