① 二叉树定义
② 二叉排序树
③ 二叉平衡树node
二叉树(Binary tree)是每一个节点最多只有两个分支(不存在分支度大于2的节点)的树结构。一般分支被称为「左子树」和「右子树」。二叉树的分支具备左右次序,不能颠倒。chrome
简单定义
二叉排序树 又称为 二叉搜索树或二叉查找树
特征
(1) 若它的左子树不空,则左子树上全部结点的值均小于它的根结点的值
(2) 若它的右子树不空,则右子树上全部结点的值均大于它的根结点的值
(3) 它的左、右子树也分别为二叉查找树
Javascript实现函数
function BinarySearchTree(keys){ //Node构造函数 let Node = function (key){ this.key = key this.left = null this.right = null } let root = null let insertNode = (node,newNode)=>{ if(newNode.key < node.key){ if(node.left === null){ node.left = newNode }else { insertNode(node.left,newNode) } }else { if (node.right === null) { node.right = newNode }else { insertNode(node.right,newNode) } } } this.insert = (key)=>{ let newNode = new Node(key) if (root === null) { root = newNode }else { insertNode(root,newNode) } } keys.forEach((key)=>{ this.insert(key) }) return root } const keys = [8,3,10,1,6,14,4,7,13] BinarySearchTree(keys)
chrome中打印以下:post
效果图:this
中序遍历
中序遍历的递归定义:先左子树,后根节点,再右子树spa
let inOrderTraverseFunction =(node,cb)=>{ if(node!==null){ inOrderTraverseFunction(node.left,cb) cb(node.key) inOrderTraverseFunction(node.right,cb) } } let callback =(key)=>{ console.log(key) } //BST的中序遍历 inOrderTraverseFunction(BinarySearchTree(keys),callback)
chrome中打印以下:code
结果:整颗二叉树节点以从小到大依次显示blog
前序遍历
前序遍历的递归定义:先根节点,后左子树,再右子树排序
let preOrderTraverseFunction =(node,cb)=>{ if(node!==null){ cb(node.key) preOrderTraverseFunction(node.left,cb) preOrderTraverseFunction(node.right,cb) } } //BST前序遍历 preOrderTraverseFunction(BinarySearchTree(keys),callback)
chrome打印以下递归
后序遍历
后序遍历的递归定义:先左子树,后右子树,再根节点
let postOrderTraverseFunction =(node,cb)=>{ if(node!==null){ postOrderTraverseFunction(node.left,cb) postOrderTraverseFunction(node.right,cb) cb(node.key) } } //BST后序遍历 postOrderTraverseFunction(BinarySearchTree(keys),callback)
chrome打印以下
查找BST最小值
白话:即二叉树左子树最左侧的那个没有左子树的节点
let minNode =(node)=>{ if(node){ while (node&&node.left !== null){ node = node.left } return node.key } return null } //查找BST最小值 console.log('the min node is '+minNode(BinarySearchTree(keys)))
chrome打印以下
查找BST最大值
白话:即二叉树右子树最右侧的那个没有右子树的节点
let maxNode =(node)=>{ if(node){ while (node&&node.right !== null){ node = node.right } return node.key } return null } //查找BST最大值 console.log('the max node is '+maxNode(BinarySearchTree(keys)))
chrome打印以下
查找BST某个值
即将该值和每一个节点比较 若是该值比此节点小 则进入左子树再递归比较 反之 若是该值比此节点大 则进入右子树再递归比较
let searchNode = (node,key)=>{ if(node === null){ return false } if(key<node.key){ return searchNode(node.left,key) }else if (key>node.key) { return searchNode(node.right,key) }else{ return true } } //BST查找某个值 console.log(searchNode(BinarySearchTree(keys),3)?'node 3 is found':'node 3 is not found') console.log(searchNode(BinarySearchTree(keys),5)?'node 5 is found':'node 5 is not found')
chrome打印以下:
删除BST某个叶子节点
叶子节点:没有左子树和右子树的节点
let removeNode = (node,key)=>{ if(node === null){ return null } if(key<node.key){ node.left = removeNode(node.left,key) return node }else if(key>node.key){ node.right = removeNode(node.right,key) return node } else{ if(node.left === null && node.right === null){ node = null return node } } } //BST删除某个叶子节点 console.log(removeNode(BinarySearchTree(keys),1),BinarySearchTree(keys))
chrome打印以下:
效果图:
删除BST某个度为1的节点
let removeNode = (node,key)=>{ if(node === null){ return null } if(key<node.key){ node.left = removeNode(node.left,key) return node }else if(key>node.key){ node.right = removeNode(node.right,key) return node } else{ if(node.left === null && node.right === null){ node = null return node } if(node.left === null){ node = node.right return node }else if (node.right === null) { node = node.left return node } } } //BST删除某个度为1的子节点 console.log(removeNode(BinarySearchTree(keys),10),BinarySearchTree(keys))
chrome打印以下:
效果图:
删除BST某个度为2的节点
let findMinNode = (node) =>{ if(node){ while(node&& node.left !== null){ node = node.left } return node } return null } let removeNode = (node,key)=>{ if(node === null){ return null } if(key<node.key){ node.left = removeNode(node.left,key) return node }else if(key>node.key){ node.right = removeNode(node.right,key) return node } else{ if(node.left === null && node.right === null){ node = null return node } if(node.left === null){ node = node.right return node }else if (node.right === null) { node = node.left return node } let minNode = findMinNode(node.right) node.key = minNode.key node.right = removeNode(node.right,minNode.key) return node } } //BST删除某个度为2的子节点 console.log(removeNode(BinarySearchTree(keys),3),BinarySearchTree(keys))
chrome打印以下:
效果图:
未完待续