同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不一样的人给出的答案均可能不一样,好比wiki,就认为asynchronous IO和non-blocking IO是一个东西。这实际上是由于不一样的人的知识背景不一样,而且在讨论这个问题的时候上下文(context)也不相同。因此,为了更好的回答这个问题,我先限定一下本文的上下文。linux
本文讨论的背景是Linux环境下的network IO。本文最重要的参考文献是Richard Stevens的“UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking ”,6.2节“I/O Models ”,Stevens在这节中详细说明了各类IO的特色和区别,若是英文够好的话,推荐直接阅读。Stevens的文风是有名的深刻浅出,因此不用担忧看不懂。本文中的流程图也是截取自参考文献。程序员
Stevens在文章中一共比较了五种IO Model:
* blocking IO
* nonblocking IO
* IO multiplexing
* signal driven IO
* asynchronous IO
由signal driven IO(信号驱动IO)在实际中并不经常使用,因此主要介绍其他四种IO Model。web
再说一下IO发生时涉及的对象和步骤。对于一个network IO (这里咱们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另外一个就是系统内核(kernel)。当一个read操做发生时,该操做会经历两个阶段:数据库
#1)等待数据准备 (Waiting for the data to be ready) #2)将数据从内核拷贝到进程中(Copying the data from the kernel to the process)
记住这两点很重要,由于这些IO模型的区别就是在两个阶段上各有不一样的状况。编程
补充:缓存
#一、输入操做:read、readv、recv、recvfrom、recvmsg共5个函数,若是会阻塞状态,则会经理wait data和copy data两个阶段,若是设置为非阻塞则在wait 不到data时抛出异常 #二、输出操做:write、writev、send、sendto、sendmsg共5个函数,在发送缓冲区满了会阻塞在原地,若是设置为非阻塞,则会抛出异常 #三、接收外来连接:accept,与输入操做相似 #四、发起外出连接:connect,与输出操做相似
在linux中,默认状况下全部的socket都是blocking,一个典型的读操做流程大概是这样:tomcat
当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来讲,不少时候数据在一开始尚未到达(好比,尚未收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。服务器
而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,而后kernel返回结果,用户进程才解除block的状态,从新运行起来。
因此,blocking IO的特色就是在IO执行的两个阶段(等待数据和拷贝数据两个阶段)都被block了。网络
几乎全部的程序员第一次接触到的网络编程都是从listen()、send()、recv() 等接口开始的,使用这些接口能够很方便的构建服务器/客户机的模型。然而大部分的socket接口都是阻塞型的。以下图多线程
ps:所谓阻塞型接口是指系统调用(通常是IO接口)不返回调用结果并让当前线程一直阻塞,只有当该系统调用得到结果或者超时出错时才返回。
实际上,除非特别指定,几乎全部的IO接口 ( 包括socket接口 ) 都是阻塞型的。这给网络编程带来了一个很大的问题,如在调用recv(1024)的同时,线程将被阻塞,在此期间,线程将没法执行任何运算或响应任何的网络请求。
一个简单的解决方案:
#在服务器端使用多线程(或多进程)。多线程(或多进程)的目的是让每一个链接都拥有独立的线程(或进程),这样任何一个链接的阻塞都不会影响其余的链接。
该方案的问题是:
#开启多进程或都线程的方式,在遇到要同时响应成百上千路的链接请求,则不管多线程仍是多进程都会严重占据系统资源,
下降系统对外界响应效率,并且线程与进程自己也更容易进入假死状态。
改进方案:
#不少程序员可能会考虑使用“线程池”或“链接池”。“线程池”旨在减小建立和销毁线程的频率,其维持必定合理数量的线程,
并让空闲的线程从新承担新的执行任务。“链接池”维持链接的缓存池,尽可能重用已有的链接、减小建立和关闭链接的频率。
这两种技术均可以很好的下降系统开销,都被普遍应用不少大型系统,如websphere、tomcat和各类数据库等。
改进后方案其实也存在着问题:
#“线程池”和“链接池”技术也只是在必定程度上缓解了频繁调用IO接口带来的资源占用。
并且,所谓“池”始终有其上限,当请求大大超过上限时,“池”构成的系统对外界的响应并不比没有池的时候效果好多少。
因此使用“池”必须考虑其面临的响应规模,并根据响应规模调整“池”的大小。
对应上例中的所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“链接池”或许能够缓解部分压力,可是不能解决全部问题。总之,多线程模型能够方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型也会遇到瓶颈,能够用非阻塞接口来尝试解决这个问题。
Linux下,能够经过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操做时,流程是这个样子:
从图中能够看出,当用户进程发出read操做时,若是kernel中的数据尚未准备好,那么它并不会block用户进程,而是马上返回一个error。从用户进程角度讲 ,它发起一个read操做后,并不须要等待,而是立刻就获得了一个结果。用户进程判断结果是一个error时,它就知道数据尚未准备好,因而用户就能够在本次到下次再发起read询问的时间间隔内作其余事情,或者直接再次发送read操做。一旦kernel中的数据准备好了,而且又再次收到了用户进程的system call,那么它立刻就将数据拷贝到了用户内存(这一阶段仍然是阻塞的),而后返回。
也就是说非阻塞的recvform系统调用调用以后,进程并无被阻塞,内核立刻返回给进程,若是数据还没准备好,此时会返回一个error。进程在返回以后,能够干点别的事情,而后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程一般被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。须要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。
因此,在非阻塞式IO中,用户进程实际上是须要不断的主动询问kernel数据准备好了没有。
# 服务端 import socket import time server=socket.socket() server.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) server.bind(('127.0.0.1',8083)) server.listen(5) server.setblocking(False) r_list=[] w_list={} while 1: try: conn,addr=server.accept() r_list.append(conn) except BlockingIOError: # 强调强调强调:!!!非阻塞IO的精髓在于彻底没有阻塞!!! # time.sleep(0.5) # 打开该行注释纯属为了方便查看效果 print('在作其余的事情') print('rlist: ',len(r_list)) print('wlist: ',len(w_list)) # 遍历读列表,依次取出套接字读取内容 del_rlist=[] for conn in r_list: try: data=conn.recv(1024) if not data: conn.close() del_rlist.append(conn) continue w_list[conn]=data.upper() except BlockingIOError: # 没有收成功,则继续检索下一个套接字的接收 continue except ConnectionResetError: # 当前套接字出异常,则关闭,而后加入删除列表,等待被清除 conn.close() del_rlist.append(conn) # 遍历写列表,依次取出套接字发送内容 del_wlist=[] for conn,data in w_list.items(): try: conn.send(data) del_wlist.append(conn) except BlockingIOError: continue # 清理无用的套接字,无需再监听它们的IO操做 for conn in del_rlist: r_list.remove(conn) for conn in del_wlist: w_list.pop(conn) #客户端 import socket import os client=socket.socket() client.connect(('127.0.0.1',8083)) while 1: res=('%s hello' %os.getpid()).encode('utf-8') client.send(res) data=client.recv(1024) print(data.decode('utf-8')) 非阻塞IO示例
可是非阻塞IO模型毫不被推荐。
咱们不可否则其优势:可以在等待任务完成的时间里干其余活了(包括提交其余任务,也就是 “后台” 能够有多个任务在“”同时“”执行)。
可是也难掩其缺点:
#1. 循环调用recv()将大幅度推高CPU占用率;这也是咱们在代码中留一句time.sleep(2)的缘由,不然在低配主机下极容易出现卡机状况 #2. 任务完成的响应延迟增大了,由于每过一段时间才去轮询一次read操做,而任务可能在两次轮询之间的任意时间完成。这会致使总体数据吞吐量的下降。
此外,在这个方案中recv()更多的是起到检测“操做是否完成”的做用,实际操做系统提供了更为高效的检测“操做是否完成“做用的接口,例如select()多路复用模式,能够一次检测多个链接是否活跃。
IO multiplexing这个词可能有点陌生,可是若是我说select/epoll,大概就都能明白了。有些地方也称这种IO方式为事件驱动IO(event driven IO)。咱们都知道,select/epoll的好处就在于单个process就能够同时处理多个网络链接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的全部socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:
当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”全部select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操做,将数据从kernel拷贝到用户进程。
这个图和blocking IO的图其实并无太大的不一样,事实上还更差一些。由于这里须要使用两个系统调用(select和recvfrom),而blocking IO只调用了一个系统调用(recvfrom)。可是,用select的优点在于它能够同时处理多个connection。
强调:
1. 若是处理的链接数不是很高的话,使用select/epoll的web server不必定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优点并非对于单个链接能处理得更快,而是在于能处理更多的链接。
2. 在多路复用模型中,对于每个socket,通常都设置成为non-blocking,可是,如上图所示,整个用户的process实际上是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。
结论: select的优点在于能够处理多个链接,不适用于单个链接
#服务端 from socket import * import select server = socket(AF_INET, SOCK_STREAM) server.bind(('127.0.0.1',8093)) server.listen(5) server.setblocking(False) print('starting...') rlist=[server,] wlist=[] wdata={} while True: rl,wl,xl=select.select(rlist,wlist,[],0.5) print(wl) for sock in rl: if sock == server: conn,addr=sock.accept() rlist.append(conn) else: try: data=sock.recv(1024) if not data: sock.close() rlist.remove(sock) continue wlist.append(sock) wdata[sock]=data.upper() except Exception: sock.close() rlist.remove(sock) for sock in wl: sock.send(wdata[sock]) wlist.remove(sock) wdata.pop(sock) #客户端 from socket import * client=socket(AF_INET,SOCK_STREAM) client.connect(('127.0.0.1',8093)) while True: msg=input('>>: ').strip() if not msg:continue client.send(msg.encode('utf-8')) data=client.recv(1024) print(data.decode('utf-8')) client.close() select网络IO模型
select监听fd变化的过程分析:
#用户进程建立socket对象,拷贝监听的fd到内核空间,每个fd会对应一张系统文件表,内核空间的fd响应到数据后,就会发送信号给用户进程数据已到; #用户进程再发送系统调用,好比(accept)将内核空间的数据copy到用户空间,同时做为接受数据端内核空间的数据清除,这样从新监听时fd再有新的数据又能够响应到了(发送端由于基于TCP协议因此须要收到应答后才会清除)。
该模型的优势:
#相比其余模型,使用select() 的事件驱动模型只用单线程(进程)执行,占用资源少,不消耗太多 CPU,同时可以为多客户端提供服务。若是试图创建一个简单的事件驱动的服务器程序,这个模型有必定的参考价值。
该模型的缺点:
#首先select()接口并非实现“事件驱动”的最好选择。由于当须要探测的句柄值较大时,select()接口自己须要消耗大量时间去轮询各个句柄。不少操做系统提供了更为高效的接口,如linux提供了epoll,BSD提供了kqueue,Solaris提供了/dev/poll,…。若是须要实现更高效的服务器程序,相似epoll这样的接口更被推荐。遗憾的是不一样的操做系统特供的epoll接口有很大差别,因此使用相似于epoll的接口实现具备较好跨平台能力的服务器会比较困难。 #其次,该模型将事件探测和事件响应夹杂在一块儿,一旦事件响应的执行体庞大,则对整个模型是灾难性的。
Linux下的asynchronous IO其实用得很少,从内核2.6版本才开始引入。先看一下它的流程:
用户进程发起read操做以后,马上就能够开始去作其它的事。而另外一方面,从kernel的角度,当它受到一个asynchronous read以后,首先它会马上返回,因此不会对用户进程产生任何block。而后,kernel会等待数据准备完成,而后将数据拷贝到用户内存,当这一切都完成以后,kernel会给用户进程发送一个signal,告诉它read操做完成了。