Python 梯度下降

为了实现监督学习,我们选择采用自变量x1、x2的线性函数来评估因变量y值,得到: 这里,sita1、sita2代表自变量x1、x2的权重(weights),sita0代表偏移量。为了方便,我们将评估值写作h(x),令x0=1,则h(x)可以写作: 其中n为输入样本数的数量。为了得到weights的值,我们需要令我们目前的样本数据评估出的h(x)尽可能的接近真实y值。我们定义误差函数(cost fu
相关文章
相关标签/搜索