1:什么是misc驱动模型?html
2:为何要有misc驱动模型?node
3:misc驱动模型的代码实现linux
4:misc驱动模型实战ide
参考:函数
http://blog.csdn.net/yicao821/article/details/6785738this
http://www.thinksaas.cn/topics/0/507/507168.htmlspa
http://www.cnblogs.com/fellow1988/p/6235080.html.net
https://www.zhihu.com/question/21508904code
http://www.cnblogs.com/snake-hand/p/3212483.htmlorm
http://blog.csdn.net/chenlong12580/article/details/7339127
--------------------------------------------------------------------------------------------------------------------------------------------------------------
1:什么是misc驱动模型
Linux包含了许多的设备驱动类型,而无论分类有多细,总会有些漏网的,这就是咱们常常说到的“其余的”等等。
在Linux里面,把没法归类的五花八门的设备定义为混杂设备(用miscdevice结构体来描述)。Linux/内核所提供的miscdevice有很强的包容性。如NVRAM,看门狗,DS1286等实时时钟,字符LCD,AMD 768随机数发生器。
miscdevice共享一个主设备号MISC_MAJOR(10),但此设备号不一样,全部的miscdevice设备造成一个链表,对设备访问时内核根据次设备号查找对应的 miscdevice设备,而后调用其中的file_operations结构体中注册的文件操做接口进程操做。
2:为何要有misc驱动模型
第一,节省主设备号:
使用普通字符设备,无论该驱动的主设备号是静态仍是动态分配,都会消耗一个主设备号,这太浪费了。并且若是你的这个驱动最终会提交到内核主线版本上的话,须要申请一个专门的主设备号,这也麻烦。
若是使用misc驱动的话就好多了。由于内核中已经为misc驱动分配了一个主设备号。当系统中拥有多个misc设备驱动时,那么它们的主设备号相同,而用子设备号来区分它们。
第二,使用简单:
有时候驱动开发人员须要开发一个功能较简单的字符设备驱动,导出接口让用户空间程序方便地控制硬件,只须要使用misc子系统提供的接口便可快速地建立一个misc设备驱动。
当使用普通的字符设备驱动时,若是开发人员须要导出操做接口给用户空间的话,须要本身去注册字符驱动,并建立字符设备class以自动在/dev下生成设备节点,相对麻烦一点。而misc驱动则无需考虑这些,基本上只须要把一些基本信息经过struct miscdevice交给misc_register()去处理便可。
因此说misc驱动模型让咱们很简单的在底层实现了字符设备驱动,而且在在应用层给予了必定的接口,节省了主设备号;其实就至关于一个杂货铺,乱七八糟的字符设备驱动模型均可以往里面
堆。
3:驱动模型代码实现:
misc驱动的实现代码在driver/char/misc.c目录下,
misc_init函数:
1 static int __init misc_init(void) 2 { 3 int err; 4
5 #ifdef CONFIG_PROC_FS 6 proc_create("misc", 0, NULL, &misc_proc_fops); 7 #endif
8 misc_class = class_create(THIS_MODULE, "misc"); 9 err = PTR_ERR(misc_class); 10 if (IS_ERR(misc_class)) 11 goto fail_remove; 12
13 err = -EIO; 14 if (register_chrdev(MISC_MAJOR,"misc",&misc_fops)) 15 goto fail_printk; 16 misc_class->devnode = misc_devnode; 17 return 0; 18
19 fail_printk: 20 printk("unable to get major %d for misc devices\n", MISC_MAJOR); 21 class_destroy(misc_class); 22 fail_remove: 23 remove_proc_entry("misc", NULL); 24 return err; 25 } 26 subsys_initcall(misc_init);
misc_init
class_create 建立了一个名为misc的类
register_chrdev(MISC_MAJOR,"misc",&misc_fops) 使用register_chrdev注册了一个字符设备驱动,主设备号为MISC_MAJOR(10);
1 static const struct file_operations misc_fops = { 2 .owner = THIS_MODULE, 3 .open = misc_open, 4 };
misc类型驱动提供了一个统一.open函数misc_open函数;
misc_open 这个函数的实质是经过inode找到misc类的次设备号minor,而后在经过次设备号和misc链表的次设备号进行匹配,匹配好之后取出
1 static int misc_open(struct inode * inode, struct file * file) 2 { 3 int minor = iminor(inode); 4 struct miscdevice *c; 5 int err = -ENODEV; 6 const struct file_operations *old_fops, *new_fops = NULL; 7
8 mutex_lock(&misc_mtx); 9
10 list_for_each_entry(c, &misc_list, list) { 11 if (c->minor == minor) { 12 new_fops = fops_get(c->fops); 13 break; 14 } 15 } 16
17 if (!new_fops) { 18 mutex_unlock(&misc_mtx); 19 request_module("char-major-%d-%d", MISC_MAJOR, minor); 20 mutex_lock(&misc_mtx); 21
22 list_for_each_entry(c, &misc_list, list) { 23 if (c->minor == minor) { 24 new_fops = fops_get(c->fops); 25 break; 26 } 27 } 28 if (!new_fops) 29 goto fail; 30 } 31
32 err = 0; 33 old_fops = file->f_op; 34 file->f_op = new_fops; 35 if (file->f_op->open) { 36 file->private_data = c; 37 err=file->f_op->open(inode,file); 38 if (err) { 39 fops_put(file->f_op); 40 file->f_op = fops_get(old_fops); 41 } 42 } 43 fops_put(old_fops); 44 fail: 45 mutex_unlock(&misc_mtx); 46 return err; 47 }
1 int misc_register(struct miscdevice * misc) 2 { 3 struct miscdevice *c; 4 dev_t dev; 5 int err = 0; 6
7 INIT_LIST_HEAD(&misc->list); 8
9 mutex_lock(&misc_mtx); 10 list_for_each_entry(c, &misc_list, list) { 11 if (c->minor == misc->minor) { 12 mutex_unlock(&misc_mtx); 13 return -EBUSY; 14 } 15 } 16
17 if (misc->minor == MISC_DYNAMIC_MINOR) { 18 int i = find_first_zero_bit(misc_minors, DYNAMIC_MINORS); 19 if (i >= DYNAMIC_MINORS) { 20 mutex_unlock(&misc_mtx); 21 return -EBUSY; 22 } 23 misc->minor = DYNAMIC_MINORS - i - 1; 24 set_bit(i, misc_minors); 25 } 26
27 dev = MKDEV(MISC_MAJOR, misc->minor); 28
29 misc->this_device = device_create(misc_class, misc->parent, dev, 30 misc, "%s", misc->name); 31 if (IS_ERR(misc->this_device)) { 32 int i = DYNAMIC_MINORS - misc->minor - 1; 33 if (i < DYNAMIC_MINORS && i >= 0) 34 clear_bit(i, misc_minors); 35 err = PTR_ERR(misc->this_device); 36 goto out; 37 } 38
39 /*
40 * Add it to the front, so that later devices can "override" 41 * earlier defaults 42 */
43 list_add(&misc->list, &misc_list); 44 out: 45 mutex_unlock(&misc_mtx); 46 return err; 47 }
在include/linux/miscdevice.h中定义了miscdevice 结构体,全部的misc模型驱动设备;都在内核围护的一个misc_list链表中;
内核维护一个misc_list链表,misc设备在misc_register注册的时候连接到这个链表,在misc_deregister中解除连接。
1 struct miscdevice { 2 int minor; //次设备号,若为 MISC_DYNAMIC_MINOR 自动分配 3 const char *name; //设备名 4 const struct file_operations *fops; //设备文件操做结构体 5 struct list_head list; //misc_list链表头 6 struct device *parent; 7 struct device *this_device; 8 const char *nodename; 9 mode_t mode; 10 };
misc_register函数
1 int misc_register(struct miscdevice * misc) 2 { 3 struct miscdevice *c; 4 dev_t dev; 5 int err = 0; 6
7 INIT_LIST_HEAD(&misc->list); 8
9 mutex_lock(&misc_mtx); 10 list_for_each_entry(c, &misc_list, list) { 11 if (c->minor == misc->minor) { 12 mutex_unlock(&misc_mtx); 13 return -EBUSY; 14 } 15 } 16
17 if (misc->minor == MISC_DYNAMIC_MINOR) { 18 int i = find_first_zero_bit(misc_minors, DYNAMIC_MINORS); 19 if (i >= DYNAMIC_MINORS) { 20 mutex_unlock(&misc_mtx); 21 return -EBUSY; 22 } 23 misc->minor = DYNAMIC_MINORS - i - 1; 24 set_bit(i, misc_minors); 25 } 26
27 dev = MKDEV(MISC_MAJOR, misc->minor); 28
29 misc->this_device = device_create(misc_class, misc->parent, dev, 30 misc, "%s", misc->name); 31 if (IS_ERR(misc->this_device)) { 32 int i = DYNAMIC_MINORS - misc->minor - 1; 33 if (i < DYNAMIC_MINORS && i >= 0) 34 clear_bit(i, misc_minors); 35 err = PTR_ERR(misc->this_device); 36 goto out; 37 } 38
39 /*
40 * Add it to the front, so that later devices can "override" 41 * earlier defaults 42 */
43 list_add(&misc->list, &misc_list); 44 out: 45 mutex_unlock(&misc_mtx); 46 return err; 47 }
misc_register
misc->this_device = device_create(misc_class, misc->parent, dev, misc, "%s", misc->name);
调用这个函数来初建立设备;
misc_deregister函数来取消注册;
1 int misc_deregister(struct miscdevice *misc) 2 { 3 int i = DYNAMIC_MINORS - misc->minor - 1; 4
5 if (list_empty(&misc->list)) 6 return -EINVAL; 7
8 mutex_lock(&misc_mtx); 9 list_del(&misc->list); 10 device_destroy(misc_class, MKDEV(MISC_MAJOR, misc->minor)); 11 if (i < DYNAMIC_MINORS && i >= 0) 12 clear_bit(i, misc_minors); 13 mutex_unlock(&misc_mtx); 14 return 0; 15 }
4:代码实战:
拿一段x210_buzzer的代码进行分析
1 module_init(dev_init); 2 module_exit(dev_exit);
看一下dev_init函数(首先初始化好dev_fops结构体、misc结构体)
1 static struct file_operations dev_fops = { 2 .owner = THIS_MODULE, 3 .open = x210_pwm_open, 4 .release = x210_pwm_close, 5 .ioctl = x210_pwm_ioctl, 6 }; 7
8 static struct miscdevice misc = { 9 .minor = MISC_DYNAMIC_MINOR, 10 .name = DEVICE_NAME, 11 .fops = &dev_fops, 12 };
1 static int __init dev_init(void) 2 { 3 int ret; 4
5 init_MUTEX(&lock); 6 ret = misc_register(&misc); 7
8 /* GPD0_2 (PWMTOUT2) */
9 ret = gpio_request(S5PV210_GPD0(2), "GPD0"); 10 if(ret) 11 printk("buzzer-x210: request gpio GPD0(2) fail"); 12
13 s3c_gpio_setpull(S5PV210_GPD0(2), S3C_GPIO_PULL_UP); 14 s3c_gpio_cfgpin(S5PV210_GPD0(2), S3C_GPIO_SFN(1)); 15 gpio_set_value(S5PV210_GPD0(2), 0); 16
17 printk ("x210 "DEVICE_NAME" initialized\n"); 18 return ret; 19 }
这个函数中作了三件事:
init_MUTEX 初始化信号量
misc_register 注册驱动
gpio_request 申请gpio
这样misc设备驱动已经写好了,在补充一下具体fops中的硬件的操做方法便可;
--------------------------------------------------------------------------------------------------
三个函数分别为:x210_pwm_close、x210_pwm_open、x210_pwm_ioctl
x210_pwm_open:尝试lock若是成功则返回0,表示可使用,若是不成功则返回EBUSY
1 static int x210_pwm_open(struct inode *inode, struct file *file) 2 { 3 if (!down_trylock(&lock)) 4 return 0; 5 else
6 return -EBUSY; 7
8 }
x210_pwm_close,解锁返回0
1 static int x210_pwm_close(struct inode *inode, struct file *file) 2 { 3 up(&lock); 4 return 0; 5 }
最关键的是x210_pwm_ioctl函数
这个函数是真正的提供给应用层操做buzzer的函数;
函数原型:
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
使用内核的ioctl函数能够对不少驱动程序的参数进行设置,如串口波特率、buzzer的频率等等;
这个函数主要的两个参数是:unsigned int, unsigned long
unsigned int传的是cmd,unsigned long 传的是参数;
当命令为PWM_IOCTL_SET_FREQ时,调用PWM_Set_Freq函数设置频率
当命令为PWM_IOCTL_STOP时,调用PWM_Stop函数;
1 static int x210_pwm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2 { 3 switch (cmd) 4 { 5 case PWM_IOCTL_SET_FREQ: 6 printk("PWM_IOCTL_SET_FREQ:\r\n"); 7 if (arg == 0) 8 return -EINVAL; 9 PWM_Set_Freq(arg); 10 break; 11
12 case PWM_IOCTL_STOP: 13 default: 14 printk("PWM_IOCTL_STOP:\r\n"); 15 PWM_Stop(); 16 break; 17 } 18
19 return 0; 20 }
1 void PWM_Stop( void ) 2 { 3 //将GPD0_2设置为input
4 s3c_gpio_cfgpin(S5PV210_GPD0(2), S3C_GPIO_SFN(0)); 5 }
pwm_set_freq函数是真正的操做硬件的函数
1 static void PWM_Set_Freq( unsigned long freq ) 2 { 3 unsigned long tcon; 4 unsigned long tcnt; 5 unsigned long tcfg1; 6
7 struct clk *clk_p; 8 unsigned long pclk; 9
10 //unsigned tmp; 11
12 //设置GPD0_2为PWM输出
13 s3c_gpio_cfgpin(S5PV210_GPD0(2), S3C_GPIO_SFN(2)); 14
15 tcon = __raw_readl(S3C2410_TCON); 16 tcfg1 = __raw_readl(S3C2410_TCFG1); 17
18 //mux = 1/16
19 tcfg1 &= ~(0xf<<8); 20 tcfg1 |= (0x4<<8); 21 __raw_writel(tcfg1, S3C2410_TCFG1); 22
23 clk_p = clk_get(NULL, "pclk"); 24 pclk = clk_get_rate(clk_p); 25
26 tcnt = (pclk/16/16)/freq; 27
28 __raw_writel(tcnt, S3C2410_TCNTB(2)); 29 __raw_writel(tcnt/2, S3C2410_TCMPB(2));//占空比为50%
30
31 tcon &= ~(0xf<<12); 32 tcon |= (0xb<<12); //disable deadzone, auto-reload, inv-off, update TCNTB0&TCMPB0, start timer 0
33 __raw_writel(tcon, S3C2410_TCON); 34
35 tcon &= ~(2<<12); //clear manual update bit
36 __raw_writel(tcon, S3C2410_TCON); 37 }
因此说不通的硬件会根据他不一样的特色来写驱动,这须要更多的经验;
--------------------------------------------------------------------------------------------------------------------------------
x210_pwm_open