上一篇文章咱们介绍了JDK中ArrayList的实现,ArrayList底层结构是一个Object[]数组,经过拷贝,复制等一系列封装的操做,将数组封装为一个几乎是无限的容器。今天咱们来介绍JDK中List接口的另一种实现,基于链表结构的LinkedList。ArrayList因为基于数组,因此在随机访问方面优点比较明显,在删除、插入方面性能会相对偏弱些(固然与删除、插入的位置有很大关系)。那么LinkedList有哪些优点呢?它在删除、插入方面的操做很简单(只是调整相关指针而已)。可是随机访问方面要逊色写。下面咱们仍是从源码上来看下这种链表结构的List。node
transient int size = 0;
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Node<E> first;
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node<E> last;
复制代码
咱们看到字段很是少,size表示当前节点数量,first指向链表的起始元素、last指向链表的最后一个元素。数组
从上面主要字段看出,LinkedList链表的Item就是一个Node结构,那么Node结构是怎样的呢?源码以下:bash
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
复制代码
咱们看到Node结构包含一个前驱prev指针,item(value)、后继next指针三个部分。结合上面的描述,咱们知道了LinkedList的主要结构。如图:数据结构
/**
* Constructs an empty list.
*/
public LinkedList() {
}
/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's'
* iterator.
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
复制代码
因为LinkedList是经过prev与next指针连接起来的,有元素添加时只须要一个个设置指针将其连接起来便可,因此构造函数相对较简洁。咱们重点来看下第二个构造函数中的addAll方法。app
/**
* Appends all of the elements in the specified collection to the end of
* this list, in the order that they are returned by the specified
* collection's iterator. The behavior of this operation is undefined if * the specified collection is modified while the operation is in * progress. (Note that this will occur if the specified collection is * this list, and it's nonempty.)
*
* @param c collection containing elements to be added to this list
* @return {@code true} if this list changed as a result of the call
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
/**
* Inserts all of the elements in the specified collection into this
* list, starting at the specified position. Shifts the element
* currently at that position (if any) and any subsequent elements to
* the right (increases their indices). The new elements will appear
* in the list in the order that they are returned by the
* specified collection's iterator.'
*
* @param index index at which to insert the first element
* from the specified collection
* @param c collection containing elements to be added to this list
* @return {@code true} if this list changed as a result of the call
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index);
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;
Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
succ = node(index);
pred = succ.prev;
}
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
}
if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}
size += numNew;
modCount++;
return true;
}
/**
* Returns the (non-null) Node at the specified element index.
*/
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
复制代码
addAll方法是将Collection集合插入链表。下面咱们来仔细分析整个过程(涉及比较多的指针操做)。函数
removeFirst方法会返回当前链表的头部节点值,而后将头结点指向下一个节点,咱们经过源码来分析:性能
/**
* Removes and returns the first element from this list.
*
* @return the first element from this list
* @throws NoSuchElementException if this list is empty
*/
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
/**
* Unlinks non-null first node f.
*/
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
复制代码
咱们看到主要逻辑在unlinkFirst方法中,逻辑仍是比较清晰的,first指针指向next节点,该节点做为新的链表头部,只是最后须要处理下边界值(next==null)的状况。removeLast方法相似,你们能够去分析源码。ui
addFirst方法是将新节点插入链表,而且将新节点做为链表头部,下面咱们来看源码:this
/**
* Inserts the specified element at the beginning of this list.
*
* @param e the element to add
*/
public void addFirst(E e) {
linkFirst(e);
}
/**
* Links e as first element.
*/
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
复制代码
代码逻辑比较清晰,newNode节点在建立时,因为是做为新的头结点的,因此prev必须是NULL的,next是指向当前头结点f。接下来就是设置first,处理边界值了。
下面咱们来看下addLast方法,源码以下:spa
/**
* Appends the specified element to the end of this list.
*
* <p>This method is equivalent to {@link #add}.
*
* @param e the element to add
*/
public void addLast(E e) {
linkLast(e);
}
/**
* Links e as last element.
*/
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
复制代码
这两个方法是咱们使用频率很高的方法,咱们来看下其内部实现:
/**
* Appends the specified element to the end of this list.
*
* <p>This method is equivalent to {@link #addLast}.
*
* @param e element to be appended to this list
* @return {@code true} (as specified by {@link Collection#add})
*/
public boolean add(E e) {
linkLast(e);
return true;
}
/**
* Removes the first occurrence of the specified element from this list,
* if it is present. If this list does not contain the element, it is
* unchanged. More formally, removes the element with the lowest index
* {@code i} such that
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>
* (if such an element exists). Returns {@code true} if this list
* contained the specified element (or equivalently, if this list
* changed as a result of the call).
*
* @param o element to be removed from this list, if present
* @return {@code true} if this list contained the specified element
*/
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
/**
* Unlinks non-null node x.
*/
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
复制代码
咱们看到add方法其实就是对linkLast方法的封装(固然,这是末尾添加)。remove方法逻辑会复杂些,须要先找到指定节点,而后调用unlink方法。
unlink方法解析
咱们看到unlink方法首先将须要删除的节点的prev和next保存起来,由于后面须要将二者链接起来。而后将prev和next分别判断设置(包括边界值的考虑),最后将x节点的数据设置为NULL。
LinkedList链表结构的,它的clear方法是如何实现的呢?咱们来看下:
/**
* Removes all of the elements from this list.
* The list will be empty after this call returns.
*/
public void clear() {
// Clearing all of the links between nodes is "unnecessary", but:
// - helps a generational GC if the discarded nodes inhabit
// more than one generation
// - is sure to free memory even if there is a reachable Iterator
for (Node<E> x = first; x != null; ) {
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
first = last = null;
size = 0;
modCount++;
}
复制代码
代码仍是比较清晰的,就是从头结点开始,将Node节点一个个的设置为NULL,方便GC回收。
有数据结构基础的同窗应该都知道队列的结构,这是一种先进先出的结构。从JDK1.5开始,LinkedList内部集成了队列的操做,LinkedList能够当作一个基本的队列进行使用。下面咱们从队列的角度来看下LinkedList提供的相关方法。
/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E element() {
return getFirst();
}
/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E remove() {
return removeFirst();
}
复制代码
从上面的方法,咱们知道peek、element方法只返回队列头部数据,不移除头部。而poll、remove方法返回队列头部数据的同是,还会移除头部。
/**
* Adds the specified element as the tail (last element) of this list.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Queue#offer})
* @since 1.5
*/
public boolean offer(E e) {
return add(e);
}
复制代码
从上面的代码中咱们看到,offer方法其实就是入队操做。
上面咱们介绍了使用LinkedList来做为队列的相关方法,在JDK6中添加相关方法让LinkedList支持双端队列。源代码以下:
// Deque operations
/**
* Inserts the specified element at the front of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerFirst})
* @since 1.6
*/
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
/**
* Inserts the specified element at the end of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerLast})
* @since 1.6
*/
public boolean offerLast(E e) {
addLast(e);
return true;
}
/**
* Retrieves, but does not remove, the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
/**
* Retrieves, but does not remove, the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}
/**
* Retrieves and removes the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
/**
* Retrieves and removes the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}
复制代码
上面的代码逻辑比较清楚,就不详细介绍了。
堆栈大伙确定很熟悉,是一种先进后出的结构。相似于叠盘子,通常咱们使用的时候确定从最上面拿取。栈也是这样,最后进入的,最早出去。LinkedList在JDK6的时候也添加了对栈的支持。咱们来看相关源码:
/**
* Pushes an element onto the stack represented by this list. In other
* words, inserts the element at the front of this list.
*
* <p>This method is equivalent to {@link #addFirst}.
*
* @param e the element to push
* @since 1.6
*/
public void push(E e) {
addFirst(e);
}
/**
* Pops an element from the stack represented by this list. In other
* words, removes and returns the first element of this list.
*
* <p>This method is equivalent to {@link #removeFirst()}.
*
* @return the element at the front of this list (which is the top
* of the stack represented by this list)
* @throws NoSuchElementException if this list is empty
* @since 1.6
*/
public E pop() {
return removeFirst();
}
复制代码
咱们看到LinkedList封装的push和pop操做其实就是对first头结点的操做。经过对头结点不短了的push、pop来模拟堆栈先进后出的结构。
private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;
private Node<E> next;
private int nextIndex;
private int expectedModCount = modCount;
ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
}
public boolean hasNext() {
return nextIndex < size;
}
public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException();
lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
}
public boolean hasPrevious() {
return nextIndex > 0;
}
public E previous() {
checkForComodification();
if (!hasPrevious())
throw new NoSuchElementException();
lastReturned = next = (next == null) ? last : next.prev;
nextIndex--;
return lastReturned.item;
}
public int nextIndex() {
return nextIndex;
}
public int previousIndex() {
return nextIndex - 1;
}
public void remove() {
checkForComodification();
if (lastReturned == null)
throw new IllegalStateException();
Node<E> lastNext = lastReturned.next;
unlink(lastReturned);
if (next == lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = null;
expectedModCount++;
}
public void set(E e) {
if (lastReturned == null)
throw new IllegalStateException();
checkForComodification();
lastReturned.item = e;
}
public void add(E e) {
checkForComodification();
lastReturned = null;
if (next == null)
linkLast(e);
else
linkBefore(e, next);
nextIndex++;
expectedModCount++;
}
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (modCount == expectedModCount && nextIndex < size) {
action.accept(next.item);
lastReturned = next;
next = next.next;
nextIndex++;
}
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
复制代码
从上面的迭代器的源码咱们能够知道如下几点:
对于集合来讲,遍历是很是常规的操做。可是对于LinkedList来讲,遍历的时候须要选择合适的方法,由于不合理的方法对于性能有很是大的差异。咱们经过例子来看:
List<String> list=new LinkedList<>();
for(int i=0;i<10000;i++) {
list.add(String.valueOf(i));
}
//遍历方法一
long time=System.currentTimeMillis();
for(int i=0;i<list.size();i++) {
list.get(i);
}
System.out.println(System.currentTimeMillis()-time);
time=System.currentTimeMillis();
Iterator<String> iterator=list.iterator();
while (iterator.hasNext()) {
iterator.next();
}
iterator.remove();
System.out.println(System.currentTimeMillis()-time);
复制代码
输出以下:
size:10000的状况
120
2
size:100000的状况
28949
2
复制代码
一样是遍历方法,为何性能差异几十倍,设置上万倍呢?研究过源码的同窗应该能发现其中的奥秘。咱们来看get方法的逻辑:
/**
* Returns the element at the specified position in this list.
*
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
/**
* Returns the (non-null) Node at the specified element index.
*/
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
复制代码
咱们看到,咱们get(index)的时候,都须要从头,或者从尾部慢慢循环过来。get(4000)的时候须要从0-4000进行遍历。get(4001)的时候仍是须要从0-4001进行遍历。作了无数的无用功。可是迭代器就不同了。迭代器经过next指针,能指向下一个节点,无需作额外的遍历,速度很是快。