Caffe for Windows 训练cifar10

咱们学习Caffe提供的简单例程,目的是为了让初学者轻松上手,以examples/cifar10/为例,主要用于小图片的分类。网络

 

1 cifar10数据集学习

60000张32*32彩色图片,50000张训练,10000张测试测试

下载cifar10数据集:http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gzui

将下载好并解压好的数据存放于/data/cifar10/路径spa

下载好的原始数据是BINARY(二进制)格式的,须要转换成LMDB或LEVELDB格式才能被Caffe识别(本文以LEVELDB格式为例)。3d

 

2 转换格式日志

咱们已经编译好Caffe,可参考前面的博客Caffe环境搭建,只须要在根目录D:\caffe-master下编写一个脚本,完成后双击该脚本便可,我是将Caffe的源码解压在D盘的。blog

脚本文件以下所示:图片

.\Build\x64\Release\convert_cifar_data.exe ./data/cifar10 ./examples/cifar10 leveldb
pause
ci

 

.\Build\x64\Release\convert_cifar_data.exe 

./data/cifar10         表示输入数据文件路径

./examples/cifar10  表示输出数据文件路径

leveldb                   表示数据格式,你也能够尝试生成lmdb格式

 

提示:如何编写bat脚本文件?

答:其实就是新建一个文本文件,而后将后缀名改写成bat就能够。

关于脚本里面的Release模式,有人确定会问,我用Debug模式不能够吗?

答:也能够。但由于在Debug模式下会出现一系列的问题,我我的建议仍是在Release模式下生成Caffe。

 

3 图像数据均值

咱们已经编译好Caffe,只须要在目录D:\caffe-master下编写一个脚本就好,完成后双击脚本。

脚本以下所示:

.\Build\x64\Release\compute_image_mean.exe -backend=leveldb ./examples/cifar10/cifar10_train_leveldb mean.binaryproto
pause

 

    .\Build\x64\Release\compute_image_mean.exe    表示图像数据进行初始化处理,须要compute_image_mean.exe可执行文件

    -backend=leveldb  表示数据格式,若是不添加这句话的,默认转化为lmdb

    ./examples/cifar10/cifar10_train_leveldb 表示刚才生成的训练数据集的路径,而不是val验证数据集的路径

     mean.binaryproto 表示输出均值文件名,后缀名为binaryproto。这里默认保存在当前路径下,也就是在D:\caffe-master

 

4 配置网络文件

该版本的网络配置文件有不少,我这里使用/examples/cifar10/cifar10_quick_train_test.prototxt。打开以后修改训练数据和验证数据以及均值文件的路径,以下图所示,红色部分为修改事后的:

因为我是CPU模式的,因此还须要修改一下/examples/cifar10/cifar10_quick_solver.prototx文件里面的模式,以下图所示,红色圆圈为修改过的,原先为GPU模式。

 

5 训练日志

因为使用了cifar10_quick_train_test.prototxt,对应的在模型训练设置文件上咱们使用cifar10_quick_solver.prototxt,其实不须要修改内容,固然你也能够本身指定一些参数。

咱们已经编译好Caffe,只须要在根目录D:\caffe-master下编写一个脚本,完成后双击该脚本便可。

.\Build\x64\Release\caffe.exe train --solver=examples/cifar10/cifar10_quick_solver.prototxt
pause

要是想进行验证的话,能够修改命令为:

.\Build\x64\Release\caffe.exe test --model=examples/cifar10/cifar10_quick_train_test.prototxt
pause

 运行结果,图中红色处为准确率,咱们训练测试主要看的也就是它:

相关文章
相关标签/搜索