面试官:祖玛游戏玩过么?我来拷拷你~

题目地址(488. 祖玛游戏)

https://leetcode-cn.com/probl...前端

题目描述

回忆一下祖玛游戏。如今桌上有一串球,颜色有红色(R),黄色(Y),蓝色(B),绿色(G),还有白色(W)。 如今你手里也有几个球。

每一次,你能够从手里的球选一个,而后把这个球插入到一串球中的某个位置上(包括最左端,最右端)。接着,若是有出现三个或者三个以上颜色相同的球相连的话,就把它们移除掉。重复这一步骤直到桌上全部的球都被移除。

找到插入并能够移除掉桌上全部球所需的最少的球数。若是不能移除桌上全部的球,输出 -1 。

示例:
输入: "WRRBBW", "RB"
输出: -1
解释: WRRBBW -> WRR[R]BBW -> WBBW -> WBB[B]W -> WW (翻译者标注:手上球已经用完,桌上还剩两个球没法消除,返回-1)

输入: "WWRRBBWW", "WRBRW"
输出: 2
解释: WWRRBBWW -> WWRR[R]BBWW -> WWBBWW -> WWBB[B]WW -> WWWW -> empty

输入:"G", "GGGGG"
输出: 2
解释: G -> G[G] -> GG[G] -> empty

输入: "RBYYBBRRB", "YRBGB"
输出: 3
解释: RBYYBBRRB -> RBYY[Y]BBRRB -> RBBBRRB -> RRRB -> B -> B[B] -> BB[B] -> empty
标注:

你能够假设桌上一开始的球中,不会有三个及三个以上颜色相同且连着的球。
桌上的球不会超过20个,输入的数据中表明这些球的字符串的名字是 "board" 。
你手中的球不会超过5个,输入的数据中表明这些球的字符串的名字是 "hand"。
输入的两个字符串均为非空字符串,且只包含字符 'R','Y','B','G','W'。

前置知识

  • 回溯
  • 哈希表
  • 双指针

公司

  • 百度

思路

面试题困难难度的题目常见的题型有:python

  • DP
  • 设计题
  • 游戏

本题就是游戏类题目。 若是你是一个前端, 说不定还会考察你如何实现一个 zuma 游戏。这种游戏类的题目,能够简单能够困难, 好比力扣经典的石子游戏,宝石游戏等。这类题目没有固定的解法。我作这种题目的思路就是先暴力模拟,再尝试优化算法瓶颈。git

注意下数据范围球的数目 <= 5,所以暴力法就变得可行。基本思路是暴力枚举手上的球能够消除的地方, 咱们可使用回溯法来完成暴力枚举的过程,在回溯过程记录最小值便可。因为回溯树的深度不会超过 5,所以这种解法应该能够 AC。github

上面提到的能够消除的地方,指的是连续相同颜色 + 手上相同颜色的球大于等于 3,这也是题目说明的消除条件。面试

所以咱们只须要两个指针记录连续相同颜色球的位置,若是能够消除,消除便可。算法

如图,咱们记录了连续红球的位置, 若是手上有红球, 则能够尝试将其清除,这一次决策就是回溯树(决策树)的一个分支。以后咱们会撤回到这个决策分支, 尝试其余可行的决策分支。优化

以 board = RRBBRR , hand 为 RRBB 为例,其决策树为:spa

其中虚线表示无需手动干预,系统自动消除。叶子节点末尾的黄色表示所有消除须要的手球个数。路径上的文字后面的数字表示这次消除须要的手球个数翻译

若是你对回溯不熟悉,能够参考下我以前写的几篇题解:好比 46.permutations

能够看出, 若是选择先消除中间的蓝色,则只须要一步便可完成。设计

关于计算连续球位置的核心代码(Python3):

i = 0
while i < len(board):
    j = i + 1
    while j < len(board) and board[i] == board[j]: j += 1
    # 其余逻辑

    # 更新左指针
    i = j

具体算法:

  1. 用哈希表存储手上的球的种类和个数,这么作是为了后面快速判断连续的球是否能够被消除。因为题目限制手上求不会超过 5,所以哈希表的最大容量就是 5,能够认为这是一个常数的空间。
  2. 回溯。

    2.1 确承认以消除的位置,算法参考上面的代码。

    2.2 判断手上是否有足够相同颜色的球能够消除。

    2.3 回溯的过程记录全局最小值。

代码

代码支持:Python3

Python3 Code:

class Solution:
    def findMinStep(self, board: str, hand: str) -> int:
        def backtrack(board):
            if not board: return 0
            i = 0
            ans = 6
            while i < len(board):
                j = i + 1
                while j < len(board) and board[i] == board[j]: j += 1
                balls = 3 - (j - i)
                if counter[board[i]] >= balls:
                    balls = max(0, balls)
                    counter[board[i]] -= balls
                    ans = min(ans, balls + backtrack(board[:i] + board[j:]))
                    counter[board[i]] += balls
                i = j
            return ans

        counter = collections.Counter(hand)
        ans = backtrack(board)
        return -1 if ans > 5 else ans

复杂度分析

  • 时间复杂度:$O(2^(min(C, 5)))$,其中 C 为连续相同颜色球的次数,好比 WWRRRR, C 就是 2, WRBDD, C 就是 4。min(C, 5) 是由于题目限定了手上球的个数不大于 5。
  • 空间复杂度:$O(min(C, 5) * Board)$,其中 C 为连续相同颜色球的次数,Board 为 Board 的长度。

关键点解析

  • 回溯模板
  • 双指针写法

你们对此有何见解,欢迎给我留言,我有时间都会一一查看回答。更多算法套路能够访问个人 LeetCode 题解仓库:https://github.com/azl3979858... 。 目前已经 36K star 啦。你们也能够关注个人公众号《力扣加加》带你啃下算法这块硬骨头。

相关文章
相关标签/搜索