导入HDFS的数据到Hive

1. 经过Hive view

CREATE EXTERNAL TABLE if not exists finance.json_serde_optd_table (
  retCode string,
  retMsg string,
  data array<struct< secid:string,="" tradedate:date,="" optid:string,="" ticker:string,="" secshortname:string,="" exchangecd:string,="" presettleprice:double,="" precloseprice:double,="" openprice:double,="" highestprice:double,="" lowestprice:double,="" closeprice:double,="" settlprice:double,="" turnovervol:double,="" turnovervalue:double,="" openint:int="">>)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
LOCATION 'hdfs://wdp.xxxxx.cn:8020/nifi/finance1/optd/';
create table if not exists finance.tb_optd
as
SELECT b.data.secID,
		b.data.tradeDate,
		b.data.optID,
		b.data.ticker,
		b.data.secShortName,
		b.data.exchangeCD,
		b.data.preSettlePrice,
		b.data.preClosePrice,
		b.data.openPrice,
		b.data.highestPrice,
		b.data.lowestPrice,
		b.data.closePrice,
		b.data.settlPrice,
		b.data.turnoverVol,
		b.data.turnoverValue,
		b.data.openInt
FROM finance.json_serde_optd_table LATERAL VIEW explode(json_serde_optd_table.data) b AS data;
 

2. 经过Zeppelin

 

%dep
z.load("/usr/hdp/2.4.2.0-258/hive-hcatalog/share/hcatalog/hive-hcatalog-core.jar");

 

// 定义导入的hive对象集合

case class HiveConfig(database: String, modelName: String, hdfsPath: String, schema: String, schema_tb: String);
var hiveConfigList = List[HiveConfig]();
 
// 建立equd数据结构
// 定义json结构
val schema_json_equd_serde ="""  retCode string,
                              retMsg string,
                              data array<struct< secid="" :="" string,="" tradedate="" date,="" ticker="" secshortname="" exchangecd="" precloseprice="" double,="" actprecloseprice:="" openprice="" highestprice="" lowestprice="" closeprice="" turnovervol="" turnovervalue="" dealamount="" int,="" turnoverrate="" accumadjfactor="" negmarketvalue="" marketvalue="" pe="" pe1="" pb="" isopen="" int="">>""";
var schema_equd ="""b.data.secID,
            		b.data.ticker,
            		b.data.secShortName,
            		b.data.exchangeCD,
            		b.data.tradeDate,
            		b.data.preClosePrice,
            		b.data.actPreClosePrice,
            		b.data.openPrice,
            		b.data.highestPrice,
            		b.data.lowestPrice,
            		b.data.closePrice,
            		b.data.turnoverVol,
            		b.data.turnoverValue,
            		b.data.dealAmount,
            		b.data.turnoverRate,
            		b.data.accumAdjFactor,
            		b.data.negMarketValue,
            		b.data.marketValue,
            		b.data.PE,
            		b.data.PE1,
            		b.data.PB,
            		b.data.isOpen""";
hiveConfigList  = hiveConfigList :+ HiveConfig("finance", "equd", "hdfs://wdp.xxxxx.cn:8020/nifi/finance1/", schema_json_equd_serde, schema_equd);

 

// 建立idxd数据结构
// 定义json结构
val schema_json_idxd_serde ="""  retCode string,
                              retMsg string,
                              data array<struct< indexid:string,="" tradedate:date,="" ticker:string,="" porgfullname:string,="" secshortname:string,="" exchangecd:string,="" precloseindex:double,="" openindex:double,="" lowestindex:double,="" highestindex:double,="" closeindex:double,="" turnovervol:double,="" turnovervalue:double,="" chg:double,="" chgpct:double="">>""";
var schema_idxd ="""b.data.indexID,
            		b.data.tradeDate,
            		b.data.ticker,
            		b.data.porgFullName,
            		b.data.secShortName,
            		b.data.exchangeCD,
            		b.data.preCloseIndex,
            		b.data.openIndex,
            		b.data.lowestIndex,
            		b.data.highestIndex,
            		b.data.closeIndex,
            		b.data.turnoverVol,
            		b.data.turnoverValue,
            		b.data.CHG,
            		b.data.CHGPct""";
hiveConfigList = hiveConfigList :+ HiveConfig("finance", "idxd", "hdfs://wdp.xxxxx.cn:8020/nifi/finance1/", schema_json_idxd_serde, schema_idxd);

 

// 循环加载数据中
  def loadDataToHive(args:HiveConfig){
    val loadPath = args.hdfsPath + args.modelName;
    val tb_json_serde = "json_serde_" + args.modelName +"_table";
    val tb= "tb_" + args.modelName;
    val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
    if(args.database != "" && args.schema != "") {
        print("正在建立项目..." + args.modelName)
        hiveContext.sql("CREATE DATABASE IF NOT EXISTS " + args.database);
        print("正在构造扩展模型...");
        hiveContext.sql("CREATE TABLE IF NOT EXISTS " + args.database + "." + tb_json_serde + "(" + args.schema + ") row format serde 'org.apache.hive.hcatalog.data.JsonSerDe' LOCATION " + "'" + loadPath + "/'");
        println("CREATE TABLE IF NOT EXISTS " + args.database + "." + tb + " as select " + args.schema_tb + " from " + args.database + "." + tb_json_serde + " LATERAL VIEW explode(" + tb_json_serde + ".data) b AS data");
        hiveContext.sql("CREATE TABLE IF NOT EXISTS " + args.database + "." + tb + " as select " + args.schema_tb + " from " + args.database + "." + tb_json_serde + " LATERAL VIEW explode(" + tb_json_serde + ".data) b AS data");
        println(args.modelName + " 扩展模型加载已完成!");
    }
  }
  hiveConfigList.size;
  hiveConfigList.foreach { x => loadDataToHive(x) };

 

 3. 第二种取法

因为data是json数据里的一个数组,因此上面的转换复杂了一点。下面这种方法是先把json里data数组取出来放到hdfs,而后直接用下面的语句放到hive:java

用splitjson 来提取、分隔 data 数组sql

NewImage

CREATE EXTERNAL TABLE if not exists finance.awen_optd (
  secid string,
  tradedate date,
  optid string,
  ticker string,
  secshortname string,
  exchangecd string,
  presettleprice double,
  precloseprice double,
  openprice double,
  highestprice double,
  lowestprice double,
  closeprice double,
  settlprice double,
  turnovervol double,
  turnovervalue double,
  openint int)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
LOCATION 'hdfs://wdp.xxxx.cn:8020/nifi/finance2/optd/';

 

 

NIFI 中国社区 QQ群:595034369apache

相关文章
相关标签/搜索