随着深度学习、区块链的发展,人类对计算量的需求愈来愈高,在传统的计算模式下,压榨GPU的计算能力一直是重点。
NV系列的显卡在这方面走的比较快,CUDA框架已经普及到了高性能计算的各个方面,好比Google的TensorFlow深度学习框架,默认内置了支持CUDA的GPU计算。
AMD(ATI)及其它显卡在这方面彷佛一直不够给力,在CUDA退出后仓促应对,使用了开放式的OPENCL架构,其中对CUDA应当说有很多的模仿。开放架构原本是一件好事,但OPENCL的发展一直不尽人意。并且为了兼容更多的显卡,程序中通用层致使的效率损失一直比较大。而实际上,如今的高性能显卡其实也就剩下了NV/AMD两家的竞争,这样基本没什么意义的性能损失不能不说让人纠结。因此在我的工做站和我的装机市场,一般的选择都是NV系列的显卡。
mac电脑在这方面是比较尴尬的,当前的高端系列是MacPro垃圾桶。至少新款的一体机MacPro量产以前,垃圾桶仍然是mac家性能的扛鼎产品。然而其内置的显卡就是AMD,只能使用OPENCL通用计算框架了。redis
下面是苹果官方给出的一个OPENCL的入门例子,结构很清晰,展现了使用显卡进行高性能计算的通常结构,我在注释中增长了中文的说明,相信可让你更容易的上手OPENCL显卡计算。express
// // File: hello.c // // Abstract: A simple "Hello World" compute example showing basic usage of OpenCL which // calculates the mathematical square (X[i] = pow(X[i],2)) for a buffer of // floating point values. // // // Version: <1.0> // // Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple") // in consideration of your agreement to the following terms, and your use, // installation, modification or redistribution of this Apple software // constitutes acceptance of these terms. If you do not agree with these // terms, please do not use, install, modify or redistribute this Apple // software. // // In consideration of your agreement to abide by the following terms, and // subject to these terms, Apple grants you a personal, non - exclusive // license, under Apple's copyrights in this original Apple software ( the // "Apple Software" ), to use, reproduce, modify and redistribute the Apple // Software, with or without modifications, in source and / or binary forms; // provided that if you redistribute the Apple Software in its entirety and // without modifications, you must retain this notice and the following text // and disclaimers in all such redistributions of the Apple Software. Neither // the name, trademarks, service marks or logos of Apple Inc. may be used to // endorse or promote products derived from the Apple Software without specific // prior written permission from Apple. Except as expressly stated in this // notice, no other rights or licenses, express or implied, are granted by // Apple herein, including but not limited to any patent rights that may be // infringed by your derivative works or by other works in which the Apple // Software may be incorporated. // // The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO // WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED // WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION // ALONE OR IN COMBINATION WITH YOUR PRODUCTS. // // IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR // CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION // AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER // UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR // OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright ( C ) 2008 Apple Inc. All Rights Reserved. // //////////////////////////////////////////////////////////////////////////////// #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <OpenCL/opencl.h> //////////////////////////////////////////////////////////////////////////////// // Use a static data size for simplicity // #define DATA_SIZE (1024) //////////////////////////////////////////////////////////////////////////////// // Simple compute kernel which computes the square of an input array // 这是OPENCL用于计算的内核部分源码,跟C相同的语法格式,经过编译后将发布到GPU设备 //(或者未来专用的计算设备)上面去执行。由于显卡一般有几10、上百个内核,因此这部分 // 须要设计成可并发的程序逻辑。 // const char *KernelSource = "\n" \ "__kernel void square( \n" \ " __global float* input, \n" \ " __global float* output, \n" \ " const unsigned int count) \n" \ "{ \n" \ // 并发逻辑主要是在下面这一行体现的,i的初始值获取当前内核的id(整数),根据id计算本身的那一小块任务 " int i = get_global_id(0); \n" \ " if(i < count) \n" \ " output[i] = input[i] * input[i]; \n" \ "} \n" \ "\n"; //////////////////////////////////////////////////////////////////////////////// int main(int argc, char** argv) { int err; // error code returned from api calls float data[DATA_SIZE]; // original data set given to device float results[DATA_SIZE]; // results returned from device unsigned int correct; // number of correct results returned size_t global; // global domain size for our calculation size_t local; // local domain size for our calculation cl_device_id device_id; // compute device id cl_context context; // compute context cl_command_queue commands; // compute command queue cl_program program; // compute program cl_kernel kernel; // compute kernel cl_mem input; // device memory used for the input array cl_mem output; // device memory used for the output array // Fill our data set with random float values // int i = 0; unsigned int count = DATA_SIZE; //随机产生一组浮点数据,用于给GPU进行计算 for(i = 0; i < count; i++) data[i] = rand() / (float)RAND_MAX; // Connect to a compute device // int gpu = 1; // 获取GPU设备,OPENCL的优点是可使用CPU进行模拟,固然这种功能只是为了在没有GPU设备上进行调试 // 若是上面变量gpu=0的话,则使用CPU模拟 err = clGetDeviceIDs(NULL, gpu ? CL_DEVICE_TYPE_GPU : CL_DEVICE_TYPE_CPU, 1, &device_id, NULL); if (err != CL_SUCCESS) { printf("Error: Failed to create a device group!\n"); return EXIT_FAILURE; } // Create a compute context // 创建一个GPU计算的上下文环境,一组上下文环境保存一组相关的状态、内存等资源 context = clCreateContext(0, 1, &device_id, NULL, NULL, &err); if (!context) { printf("Error: Failed to create a compute context!\n"); return EXIT_FAILURE; } // Create a command commands //使用获取到的GPU设备和上下文环境监理一个命令队列,其实就是给GPU的任务队列 commands = clCreateCommandQueue(context, device_id, 0, &err); if (!commands) { printf("Error: Failed to create a command commands!\n"); return EXIT_FAILURE; } // Create the compute program from the source buffer //将内核程序的字符串加载到上下文环境 program = clCreateProgramWithSource(context, 1, (const char **) & KernelSource, NULL, &err); if (!program) { printf("Error: Failed to create compute program!\n"); return EXIT_FAILURE; } // Build the program executable //根据所使用的设备,将程序编译成目标机器语言代码,跟一般的编译相似, //内核程序的语法类错误信息都会在这里出现,因此通常尽量打印完整从而帮助判断。 err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); if (err != CL_SUCCESS) { size_t len; char buffer[2048]; printf("Error: Failed to build program executable!\n"); clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len); printf("%s\n", buffer); exit(1); } // Create the compute kernel in the program we wish to run //使用内核程序的函数名创建一个计算内核 kernel = clCreateKernel(program, "square", &err); if (!kernel || err != CL_SUCCESS) { printf("Error: Failed to create compute kernel!\n"); exit(1); } // Create the input and output arrays in device memory for our calculation // 创建GPU的输入缓冲区,注意READ_ONLY是对GPU而言的,这个缓冲区是创建在显卡显存中的 input = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count, NULL, NULL); // 创建GPU的输出缓冲区,用于输出计算结果 output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * count, NULL, NULL); if (!input || !output) { printf("Error: Failed to allocate device memory!\n"); exit(1); } // Write our data set into the input array in device memory // 将CPU内存中的数据,写入到GPU显卡内存(内核函数的input部分) err = clEnqueueWriteBuffer(commands, input, CL_TRUE, 0, sizeof(float) * count, data, 0, NULL, NULL); if (err != CL_SUCCESS) { printf("Error: Failed to write to source array!\n"); exit(1); } // Set the arguments to our compute kernel // 设定内核函数中的三个参数 err = 0; err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input); err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &output); err |= clSetKernelArg(kernel, 2, sizeof(unsigned int), &count); if (err != CL_SUCCESS) { printf("Error: Failed to set kernel arguments! %d\n", err); exit(1); } // Get the maximum work group size for executing the kernel on the device //获取GPU可用的计算核心数量 err = clGetKernelWorkGroupInfo(kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, NULL); if (err != CL_SUCCESS) { printf("Error: Failed to retrieve kernel work group info! %d\n", err); exit(1); } // Execute the kernel over the entire range of our 1d input data set // using the maximum number of work group items for this device // 这是真正的计算部分,计算启动的时候采用队列的方式,由于通常计算任务的数量都会远远大于可用的内核数量, // 在下面函数中,local是可用的内核数,global是要计算的数量,OPENCL会自动执行队列,完成全部的计算 // 因此在前面强调了,内核程序的设计要考虑、并尽力利用这种并发特征 global = count; err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global, &local, 0, NULL, NULL); if (err) { printf("Error: Failed to execute kernel!\n"); return EXIT_FAILURE; } // Wait for the command commands to get serviced before reading back results // 阻塞直到OPENCL完成全部的计算任务 clFinish(commands); // Read back the results from the device to verify the output // 从GPU显存中把计算的结果复制到CPU内存 err = clEnqueueReadBuffer( commands, output, CL_TRUE, 0, sizeof(float) * count, results, 0, NULL, NULL ); if (err != CL_SUCCESS) { printf("Error: Failed to read output array! %d\n", err); exit(1); } // Validate our results // 下面是使用CPU计算来验证OPENCL计算结果是否正确 correct = 0; for(i = 0; i < count; i++) { if(results[i] == data[i] * data[i]) correct++; } // Print a brief summary detailing the results // 显示验证的结果 printf("Computed '%d/%d' correct values!\n", correct, count); // Shutdown and cleanup // 清理各种对象及关闭OPENCL环境 clReleaseMemObject(input); clReleaseMemObject(output); clReleaseProgram(program); clReleaseKernel(kernel); clReleaseCommandQueue(commands); clReleaseContext(context); return 0; }
由于使用了mac的OPENCL框架,因此编译的时候要加上对框架的引用,以下所示:api
gcc -o hello hello.c -framework OpenCL