产品看到竞品能够标记物体的功能,秉承一向的他有我也要有,他没有我更要有的做风,丢过来一网站,说这个功能很简单,必定能够实现html
这时候万能的谷歌发挥了做用,在茫茫的数据大海中发现了Tensorflow机器学习框架,也就是目前很是火爆的的深度学习(人工智能),既然方案已有,就差一个程序员了python
百科介绍:TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,可被用于语音识别或图像识别等多项机器学习和深度学习领域。git
翻译成大白话:是一个深度学习和神经网络的框架,底层C++,经过Python进行控制,固然,也是支持Go、Java等语言程序员
git clone https://github.com/guandeng/tensorflow.gitgithub
文件目录格式以下json
└── tensorflow ├── Dockerfile ├── README.md ├── data │ ├── models │ ├── pbtxt │ └── tf_models ├── object_detection_api.py ├── server.py ├── sh │ ├── download_data.sh │ └── ods.sh ├── static ├── templates └── upload
pip3 install -r requirements.txtapi
sh sh/download_data.sh数组
echo 'export PYTHONPATH=$PYTHONPATH:
pwd
/data/tf_models/models/research'>> ~/.bashrc && source ~/.bashrc浏览器
python3 server.pybash
没有报错,说明你已成功搭建环境,使用过程是否是很是简单,下面介绍代码调用逻辑过程
我从谷歌提供几种模型选出来对比
为了测试方便,笔者选用轻量级(ssd_mobilenet)做为本次识别物体模型
引入Python库
import numpy as np import os import tensorflow as tf import json import time from PIL import Image # 兼容Python2.7版本 try: import urllib.request as ulib except Exception as e: import urllib as ulib import re from object_detection.utils import label_map_util
载入模型
MODEL_NAME = 'data/models/ssd_mobilenet_v2_coco_2018_03_29' PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' PATH_TO_LABELS = os.path.join('data/pbtxt','mscoco_label_map.pbtxt') # CWH: Add object_detection path # data/pbtxt下mscoco_label_map.pbtxt最大item.id NUM_CLASSES = 90 detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() # 加载模型 with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='')
载入标签映射,内置函数返回整数会映射到pbtxt字符标签
mscoco_label_map.pbtxt格式以下
item { name: "/m/01g317" id: 1 display_name: "person" } item { name: "/m/0199g" id: 2 display_name: "bicycle" }
# 加载标签 label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default(): config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(graph=detection_graph,config=config) as sess: image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # 物体坐标 detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # 检测到物体的准确度 detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0')
def get_objects(file_name, threshold=0.5): image = Image.open(file_name) # 判断文件是不是jpeg格式 if not image.format=='JPEG': result['status'] = 0 result['msg'] = file_name+ ' is ' + image.format + ' ods system allow jpeg or jpg' return result image_np = load_image_into_numpy_array(image) # 扩展维度 image_np_expanded = np.expand_dims(image_np, axis=0) output = [] # 获取运算结果 (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # 去掉纬度为1的数组 classes = np.squeeze(classes).astype(np.int32) scores = np.squeeze(scores) boxes = np.squeeze(boxes) for c in range(0, len(classes)): if scores[c] >= threshold: item = Object() item.class_name = category_index[classes[c]]['name'] # 物体名称 item.score = float(scores[c]) # 准确率 # 物体坐标轴百分比 item.y1 = float(boxes[c][0]) item.x1 = float(boxes[c][1]) item.y2 = float(boxes[c][2]) item.x2 = float(boxes[c][3]) output.append(item) # 返回JSON格式 outputJson = json.dumps([ob.__dict__ for ob in output]) return outputJson
server.py下的逻辑
def image(): startTime = time.time() if request.method=='POST': image_file = request.files['file'] base_path = os.path.abspath(os.path.dirname(__file__)) upload_path = os.path.join(base_path,'static/upload/') # 保存上传图片文件 file_name = upload_path + image_file.filename image_file.save(file_name) # 准确率过滤值 threshold = request.form.get('threshold',0.5) # 调用Api服务 objects = object_detection_api.get_objects(file_name, threshold) # 模板显示 return render_template('index.html',json_data = objects,img=image_file.filename)
curl http://localhost:5000 | python -m json.tool
[ { "y2": 0.9886252284049988, "class_name": "bed", "x2": 0.4297400414943695, "score": 0.9562674164772034, "y1": 0.5202791094779968, "x1": 0 }, { "y2": 0.9805927872657776, "class_name": "couch", "x2": 0.4395904541015625, "score": 0.6422878503799438, "y1": 0.5051193833351135, "x1": 0.00021047890186309814 } ]
在浏览器访问网址体验
你们确定很好奇,怎么训练本身须要检测的物体,能够期待下一篇文章