下笔若有神:这是一个基于营销行业的 AI 技术实践

image.png

今年京东 618,平台累计下单金额超 2692 亿元,创下了新的记录。惊喜的数字背后, 离不开京东智联云的 AI 技术为用户多元购物体验的赋能。在【发现好货】中 AI 创做的内容是人工创做内容曝光点击率的 1.4 倍。在京小智智能客服,智能生成了数百万营销文案,天天至关于超过 500 个文案编辑人员的工做量。网络

“读书破万卷,下笔若有神”,当机器书读万卷的时候,可否作到下笔有神呢?框架

咱们正在经历一个节奏愈来愈快的时代,互联网上的信息来也匆匆去也匆匆,各行各业涉及到高频内容生产和处理工做的都但愿内容生产的速度快、质量高、数量多。而随着人工智能技术的发展,让机器辅助人类更高效地处理信息,以及让机器自动生成信息都已经成为可能。ide

让机器“下笔若有神”,涉及到的就是天然语言处理(NLP)技术了,其实依据 NLP 让机器帮助人工写做的技术早已不是新鲜事,前两年人工智能最火热的时候,关于 “AI 写新闻稿,记者要失业”、“AI 写剧本,编剧要下岗”等新闻甚嚣尘上,对于 AI 致使文字工做者失业的讨论也是学术界、产业界喜欢探讨的话题。性能

对于这种技术能力,在市场上咱们常听到的称呼则是「智能写做」,它能够普遍应用于各类业务场景中。学习

咱们以电商场景为例,在电商产品页面,经过点击商品标题、商品详情,到最终的下单行为,图文的感染力是左右用户的实在缘由,并且随着电商平台体量增大,必然会面临须要更快更优质的内容以实现电商转化率地提高。但人工写做很难知足电商场景的效率和成本要求,「智能写做」这时候就能够发挥出独有优点。测试

那么「智能写做」在京东有哪些应用?涉及到哪些关键性技术?其在京东 618 又发挥了什么做用呢?带着这些问题,咱们采访到了京东智联云平台产品经理,天然语言处理与智慧内容营销产品负责人朱林仓。ui

image.png

什么场景适合让机器代替人工?重复性的劳动。在写做这件事上,把一些能找到规律的、大批量、短期内需产出的内容让机器输出,自己对于商业来讲,具备成本优点效率优点编码

从成本角度讲,一个系统一我的操做就能生产出 10 倍于人工的营销文案,这样的场景中技术是必定占优点的,并且当前的技术能力已经达到了替代部分人工的经济可行性和技术可行性。人工智能

从效率角度讲,机器可以经过数据分析,经过更精细的数据挖掘维度和非结构化营销内容的数据化与结构化,有效提高营销转化率,进而提高单位流量成本下的 GMV 收益。spa

因此智能写做在电商场景中的应用是很是占优点的。同时也解决了品牌方、消费者和内容生产方三方的难题:品牌方所投放内容转化订单金额提高困难、消费者面对导购内容与商品不一致的平台使得选择成本增高,体验变差、内容生产方人工成本居高不下,资料搜集时间长,内容审核修订,素材产出效率低。

目前,京东的「智能写做」更多应用在自身平台——京东APP上:京东【发现好货】频道、京小智智能客服、京东搭配购、社交电商京粉、人机交互写做等。

image.png

image.png

智能写做可以针对不一样群体采用不一样营销策略,以及不一样风格的营销文案,从而提升营销转化率。具体是如何实现的呢?京东 AI 研究院提出了基于商品要素的多模态摘要模型,论文发表在 AAAI2020 上,可基于商品要素进行可控的文案生成。

这也得益于京东原创的商品元素体系,首先根据用户的行为(浏览、点击、加购、下单、评论、分享等)识别用户感兴趣的商品要素——根据这些要素指定模型要生成的文案必须包含的商品要素——利用京东提出的基于商品要素可控的文案生成相应文案。

_在京东 APP,经过 AI 创做的数十万商品营销图文素材,_不只填补了商品更新与达人写做内容更新之间的巨大缺口,也提高了内容频道的内容丰富性。同时,AI 生成内容在曝光点击率、进商品详情转化率等方面,其实都表现出了优于人工创做营销的内容。

另外,在其余的互联网场景中,智能写做也在大放异彩。好比:店铺装修运营、广告创意创做等场景下,将重复工做由 AI 技术完成,创意工做由 AI 构建数据支持和洞察支持,人机协同创做更高效的创意营销内容。还有直播场景下,AI 能够辅助主播创做黄金话术、实时洞察消费者情绪变化与直播间的消费者需求分布等。

image.png

京东「智能写做」依靠的关键技术就是多模态异构数据自动摘要技术。

经过输入多模态(图片+文本)、异构(结构化商品知识图片和非结构化纯文本)数据,挖掘卖点和商品要素,模型包括多模态的编码器和解码器、预训练语言模型提升文本合规性、句间流畅度模型提升文本逻辑性、标点纠错模型改正标点错误,最终输出商品的营销短文。

image.png

在这里,经过解读京东 AI 研究院入选 AAAI 2020 的两篇论文,你们对智能写做涉及到的模型将能有更好的了解。论文标题为:《Aspect-Aware Multimodal  Summarization  for  Chinese  E-Commerce  Products》、《Keywords-Guided Abstractive Sentence Summarization》,分别介绍了基于商品要素地多模态摘要模型和基于关键词指导的生成式句子摘要方法。

关于论文能够点击如下连接了解详情:

* 《Aspect-Aware Multimodal  Summarization  for  Chinese  E-Commerce  Products》论文解读

*《Keywords-Guided Abstractive Sentence Summarization》论文解读

image.png

自动文本摘要是 NLP 领域中的一个传统任务,提出于 20 世纪 50 年代,其目标就是基于给定的文本,生成一段包含其中最重要信息的简化文本。经常使用的自动文本摘要方法包括抽取式自动文摘(Extractive Summarization) 和生成式自动文摘(Abstractive Summarization)。抽取式自动文摘经过提取给定文本中已存在的关键词、短语或句子组成摘要;生成式自动文摘则是经过对给定文本创建抽象的语意表示,利用天然语言生成技术,生成摘要。

京东提出的方法则是融合了抽取式自动文摘和生成式自动文摘,在 Gigaword 句子摘要数据集上与对比模型相比,也取得了更好的性能。

如何让句子“由长变短”呢?京东提出的想法是:输入文本中的关键词能够为自动文摘系统提供重要的指导信息。这一过程就是:首先将输入文本和参考摘要之间重叠的词(停用词除外)做为 Ground-Truth 关键词,经过多任务学习的方式,共享同一个编码器对输入文本进行编码,训练关键词提取模型和摘要生成模型,其中关键词提取模型是基于编码器隐层状态的序列标注模型,摘要生成模型是基于关键词指导的端到端模型。

关键词提取模型和摘要生成模型均训练收敛后,利用训练好的关键词提取模型对训练集中的文本抽取关键词,利用抽取到的关键词对摘要生成模型进行微调。测试时,利用关键词提取模型对测试集中的文本抽取关键词,最终利用抽取到的关键词和原始测试集文本生成摘要。

这其中的重点动做可总结为如下几点:

  1. 经过采用多任务学习框架来提取关键词和生成摘要;
  2. 经过基于关键字的选择性编码策略,在编码过程当中获取重要的信息;
  3. 经过双重注意力机制,动态地融合了原始输入句子和关键词的信息;
  4. 经过双重复制机制,将原始输入句子和关键词中的单词复制到输出摘要中。
  5. 在标准句子摘要数据集上,京东验证了关键词对句子摘要任务的有效性。

image.png

商品摘要任务的挑战性在于:一方面,商品给顾客的第一印象来自该商品的外观,这对顾客的购买决策有着相当重要的影响。所以,商品摘要系统必须可以充分挖掘商品视觉信息,反映商品的外观特点。另外一方面,不一样的产品有不一样的卖点。例如,紧凑型冰箱的优势是节省空间,而环保型冰箱的优势是节能。所以,商品摘要应该反映商品最独特的方面,从而最大限度地促成消费者的购买。

京东 AI 研究院提出的这一电商商品的多模态摘要模型,将商品图像、产品标题和其余产品描述做为输入,生成商品文本摘要。有效地整合了商品的视觉和文本信息。

image.png

这里对于文本信息的整合很好理解,那么这一模型是怎么理解图像信息的呢?

京东 AI 研究院提出的这一模型基于指针 - 生成器网络(Pointer-Generator)。采用了三种策略将商品图像信息融入模型中,包括使用商品图片的全局特征初始化编码器,使用商品图片的全局特征初始化解码器,以及使用商品图片的局部特征,经过注意力机制生成图片上下文向量参与解码。

image.png

这使得京东的智能写做能够更层次化地理解商品图像。第一,经过 R-CNN 挖掘有价值的局部特征,例如冰箱的面板、手机的屏幕,将其融入到文本解码的每一步中,使模型针对商品有卖点的局部进行描述;第二,经过 ResNet 挖掘商品全局特征,该特征和文本全局特征一块儿,对编码器和解码器初始状态进行赋值,从而从更多的角度丰富商品的特征,提升商品的可区分度,生成更加多样化的文案。

image.png

2019 年 2 月底,在【发现好物】的频道内实践智能写做功能,它帮助了京东零售生成多种风格文案,包括属性类描述、体验类描述、官方单品描述、搭配商品描述、社交体等,涵盖京东 2700 余个三级类目。文案人工审核率超过 99%,曝光点击率高出达人写做 40%,累计引单金额超过一亿。

并且今年京东 618,【发现好货】的 AI 内容导购,AI 内容是人工创做内容曝光点击率的 1.4 倍。另外在京小智智能客服,智能生成了数百万营销文案,天天至关于超过 500 个文案编辑人员的工做量。

在 NLP 基础技术研究上,京东将来将强化电商领域语言模型,强化 NLP 应用技术研究,在商品理解和营销内容理解方面更加深刻营销场景。

后续,京东「智能写做」还将覆盖更多题材的内容营销导购频道,将商品营销内容理解能力、卖点挖掘与卖点包装能力,更多的赋能商家店铺装修、广告文案创意等场景。同时在这项能力的迭代上,提供千人千面的个性化文案,短文、长文、直播话术等多题材智能创做、营销内容智能诊断。

点击"阅读原文",京东助您下笔若有神!

image.png

相关文章
相关标签/搜索