Java 8 的 JVM 有多快?Fork-Join 性能基准测试

Java 8 已经发布一段时间了,许多开发者已经开始使用 Java 8。本文也将讨论最新发布在 JDK 中的并发功能更新。事实上,JDK 中已经有多处java.util.concurrent 改动,但本文重点将是 Fork-Join 框架的改进。咱们将讨论一点 Fork-Join,而后实现一个简单的基准测试以比较 FJ 在 Java 7 和Java 8 中的性能。html

Java 8 的 JVM 有多快?Fork-Join 性能基准测试

##你可能对Fork/Join在乎的地方java

ForkJoin 是一个一般用于并行计算递归任务的框架。它最先被引入Java 7 中,从那时起它就能很好地完成目标任务。缘由在于,许多大型任务本质上均可以递归表示。git

以最有名的 MapReduce 编程为例:对一篇文章中不一样词的出现次数进行统计。很显然,能够将文档分为不少部分,逐项地记录字数,最后再合并成结果。诚然,ForkJoin实际上是 MapReduce 基本法则的一种实现,区别在于,全部的 worker 都是同一个虚拟机中的线程,而不是一组机器。github

ForkJoin 框架的核心部分是 ForkJoinPool ,它是一个 ExecutorService, 可以接收异步任务,返回Future对象,所以可用于跟踪执行中的计算状态。编程

使 ForkJoinPool 不一样于其余 ExecutorServices 的是,在当下并不执行任务的工做线程会检查其伙伴的工做状态,并向他们借取任务。这种技术称为 work-stealing 。那么,work-stealing 有什么妙用呢?api

queue

work-stealing 是一种分散式的工做量管理方法,无需将工做单元分配给全部可用的工做线程,而是每一个线程本身管理其任务队列。关键在于高效地管理这些队列。安全

关于让每一个工做进程处理本身的队列,有两个主要问题:服务器

  • 外部提交的任务去哪里了?
  • 咱们怎样组织 work-stealing 以有效访问队列

本质上来讲,在执行大型任务时,外部提交任务和由工做线程建立的任务之间区别不大。他们都有相似的执行要求并提供结果。然而,运做方式是不一样的。最主要的区别在于由工做进程建立的任务能够被窃取。这意味着即使被放进了一个工做进程的任务队列中,他们仍可能被其余工做进程执行。并发

ForkJoin 框架处理它的方法很简单,每一个工做线程都有2个任务队列,一个用于外部任务,另外一个用于实现窃取工做进程的运做。当外部提交任务时,会将任务添加至随机的工做队列中。当一个任务被分为更小的任务时,工做线程将他们添加到本身的任务队列中,并但愿其余工做线程来帮忙。oracle

窃取任务的想法基于如下事实:工做线程在它任务队列末尾添加任务。在正常的执行过程当中,每一个工做线程试着去从任务队列的队首拿任务,当其我的队列的任务为空时,这一操做就会失败,转而窃取别的工做线程的任务队列末尾的任务。这有效避免了多数任务队列的互锁问题,提升了性能。

另外一个使 ForkJoin 池工做更快的诀窍是当一个工做线程窃取任务时,它留下了它在哪里取得任务的线索,这样原始的工做线程能够找到它而且帮助该工做线程,所以父任务的的工做进展会更快。

总而言之,这是一套极其复杂的系统,须要大量的背景知识使其顺利运行。而且,系统的属性和性能与具体实现的方式关系很大。所以笔者怀疑,若不进行重大的重构,系统会完全改变。

Java 7 中 ForkJoin 有什么问题?

在 Java 7 中引入 ForkJoin 框架以后,它运行良好。然而它并无中止进步。在 Java 8 的并发性更新中, ForkJoin 获得改善。从此次的 Java 加强方案中,咱们能够了解改善的内容。

增长了 ForkJoinPools 的功能并提升其性能,使其应用在用户但愿的日益普遍的应用中,且效率更高。新特性包括对最适于 IO-bound 使用的 completion-based 设计的支持等。

另外一个消息来源固然是与改进做者的对话,例如,Doug Lea 早前曾提到的更新有:

当大量的用户提交大量任务时,吞吐量能大幅度提升。其原理是将外部提交者与工做线程类似地对待——均使用随机任务队列和窃取任务。当全部任务都为异步,且被提交至 pool 而不是 forked 时,能极大地提升吞吐量。

然而找出究竟什么被改变了、哪些场景被影响了并不简单。所以,让咱们换一种方式解决。笔者会建立一个基准测试程序以模仿简单的 ForkJoin 计算,并测量 ForkJoin 处理任务与单个线程依次完成任务各自所需时间,但愿这种方法能帮咱们找出改善的具体内容。

##Java 8 和 Java 7 性能的比较

笔者建立了一个基准测试程序以探索 Java 7 和 Java 8 之间的区别是否真的明显。若是你想查看源码,或者亲自尝试,这里是其 Github repo

因为Oracle工程师的努力,OpenJDK如今已经包含 Java Microbenchmark Harness (JMH)项目,该项目专用于建立基准测试程序,且不容易出现常见的微基准测试问题与错误。

JMH 还附带了 Maven 原型项目。所以,将一切设置好其实很简单。

org.openjdk.jmh
  mh-core
  0.4.1

在写本文时,JMH core 的最新版本是 0.4.1 ,包括了 @Param 注释,可用一系列的参数化输入运行基准测试程序。这减轻了手动重复执行相同基准测试的痛苦,并简化了获取结果的流程。

如今,每一个基准测试迭代会得到本身的 ForkJoinPool 实例,这也减小了经常使用 ForkJoinPool 实例化在 Java 8 与其以前版本中的区别。

@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Warmup(iterations = 5, time = 3, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 20, time = 3, timeUnit = TimeUnit.SECONDS)
@Fork(1)
@State(Scope.Benchmark)
public class FJPBenchmark {

  @Param({ "200", "400", "800", "1600"})
  public int N;

  public List<recursivetask> tasks;
  public ForkJoinPool pool = new ForkJoinPool();

  @Setup
  public void init() {
    Random r = new Random();
    r.setSeed(0x32106234567L);
    tasks = new ArrayList<recursivetask>(N * 3);

    for (int i = 0; i < N; i++) {
      tasks.add(new Sin(r.nextDouble()));
      tasks.add(new Cos(r.nextDouble()));
      tasks.add(new Tan(r.nextDouble()));
    }
  }

  @GenerateMicroBenchmark
  public double forkJoinTasks() {
    for (RecursiveTask task : tasks) {
      pool.submit(task);
    }
    double sum = 0;
    Collections.reverse(tasks);
    for (RecursiveTask task : tasks) {
      sum += task.join();
    }
    return sum;
  }

  @GenerateMicroBenchmark
  public double computeDirectly() {
    double sum = 0;
    for (RecursiveTask task : tasks) {
      sum += ((DummyComputableThing) task).dummyCompute();
    }
    return sum;
  }
}

SinCosTanRecursiveTask 的实例,实际上 Sin 和 Cos 并不递归,但会分别计算 Math.sin(input)Math.cos(input) 的值 。Tan 的任务实际上会递归为一组 Sin 和 Cos ,并返回二者的除法结果。

JMH 处理项目的代码并从标有 @GenerateMicroBenchmark 注释的方法处生成基准测试程序。你在该类上方看到的其余注释指定了基准测试的选项:迭代次数,计入最终结果的迭代次数,是否 fork 另外一个 JVM 进程用于基准测试以及测量哪些值。测量值能够是代码的吞吐量,或这些方法在一段时间内的执行次数。

@Param 指定运行基准测试程序时几个输入的大小。总而言之,JMH很是简单,建立基准测试程序不须要手动处理迭代、定时或整理结果。

用 Java 7 和 8 运行该基准测试获得如下结果。笔者分别使用的是1.7.0_40 and 1.8.0.版本。

shelajev@shrimp ~/repo/blogposts/fork-join-blocking-perf » java -version
java version "1.7.0_40"
Java(TM) SE Runtime Environment (build 1.7.0_40-b43)
Java HotSpot(TM) 64-Bit Server VM (build 24.0-b56, mixed mode)

Benchmark                   (N)   Mode   Samples         Mean   Mean error    Units
o.s.FJPB.computeDirectly    200  thrpt        20       27.890        0.306   ops/ms
o.s.FJPB.computeDirectly    400  thrpt        20       14.046        0.072   ops/ms
o.s.FJPB.computeDirectly    800  thrpt        20        6.982        0.043   ops/ms
o.s.FJPB.computeDirectly   1600  thrpt        20        3.481        0.122   ops/ms
o.s.FJPB.forkJoinTasks      200  thrpt        20       11.530        0.121   ops/ms
o.s.FJPB.forkJoinTasks      400  thrpt        20        5.936        0.126   ops/ms
o.s.FJPB.forkJoinTasks      800  thrpt        20        2.931        0.027   ops/ms
o.s.FJPB.forkJoinTasks     1600  thrpt        20        1.466        0.012   ops/ms


shelajev@shrimp ~/repo/blogposts/fork-join-blocking-perf » java -version
java version "1.8.0"
Java(TM) SE Runtime Environment (build 1.8.0-b132)
Java HotSpot(TM) 64-Bit Server VM (build 25.0-b70, mixed mode)

Benchmark                   (N)   Mode   Samples         Mean   Mean error    Units
o.s.FJPB.computeDirectly    200  thrpt        20       27.680        2.050   ops/ms
o.s.FJPB.computeDirectly    400  thrpt        20       13.690        0.994   ops/ms
o.s.FJPB.computeDirectly    800  thrpt        20        6.783        0.548   ops/ms
o.s.FJPB.computeDirectly   1600  thrpt        20        3.364        0.304   ops/ms
o.s.FJPB.forkJoinTasks      200  thrpt        20       15.868        0.291   ops/ms
o.s.FJPB.forkJoinTasks      400  thrpt        20        8.060        0.222   ops/ms
o.s.FJPB.forkJoinTasks      800  thrpt        20        4.006        0.024   ops/ms
o.s.FJPB.forkJoinTasks     1600  thrpt        20        1.968        0.043   ops/ms

为了便于查看结果,下面以图表形式进行展现。

咱们能够看到 JDK 7 与 8 间的基线结果(直接用同一线程运行程序的吞吐量)差别并不大。然而,若加入管理递归任务的时间,使用 ForkJoin 来执行,则 Java 8 的速度更快。这个简单的基准测试代表,在最新版的 Java 中,管理 ForkJoin 任务的效率有了 35% 左右的性能提升。

基线和 FJ 计算之间的结果差别是由于咱们刻意建立的递归任务很是单薄。该任务实质上只是调用一个优化后的数学类。所以,直接进行数学运算会快得多。一个更强壮的任务必将改变这一状况,可是它们会减轻 ForkJoin 管理的开销,而这是咱们起初就想测量的目标。不过,通常而言,执行递归任务比屡次执行同个方法调用要高效得多。

同时,Java 7 和 Java 8 的基线测试结果也有略微的不一样。这个差别是能够忽视的,但极可能不是由于 Java 7 和 8 中数学类的实现差别形成的。而是一个测量假象,JMH 努力抵消却仍是没法避免。

免责声明:固然,这些结果是模拟所得的,你应该持保留态度。然而,除了讨论 Java 性能,笔者也想展现 JMH 建立基准测试程序是如何简单,且能避免一些常见基准测试问题,好比没有提早预热 JVM 。若是基准测试自己存在缺陷,热身也无济于事,可是确定仍是有所裨益。所以,若是你看到以上代码中的逻辑缺陷,请必定告诉笔者。

##总结: 首先,ForkJoinPool, ForkJoinPool.WorkQueueForkJoinTask 类的源码并不容易阅读,它包含许非安全原理,所以你可能无法在15分钟彻底理解ForkJoin 框架。

然而,这些类的文档丰富,而且包含许多内部注释。它也可能学习挖掘JDK最有趣的地方。

另外一个相关的发现是 ForkJoinPool 在 Java8 中的性能更好,至少在一些用例中是这样的。虽然笔者不能精确地描述这背后的缘由,但若是我在代码中用到 ForkJoin ,我必定会升级 Java 版本。

原文地址:http://zeroturnaround.com/rebellabs/is-java-8-the-fastest-jvm-ever-performance-benchmarking-of-fork-join/ 本文做者:Oleg Shelajev 系 OneAPM 工程师编译整理。

OneAPM 为您提供端到端的 Java 应用性能解决方案,咱们支持全部常见的 Java 框架及应用服务器,助您快速发现系统瓶颈,定位异常根本缘由。分钟级部署,即刻体验,Java 监控历来没有如此简单。想阅读更多技术文章,请访问 OneAPM 官方技术博客 本文转自 OneAPM 官方博客

相关文章
相关标签/搜索