.NET开发人员如何开始使用ML.NET

随着谷歌,Facebook发布他们的工具机器学习工具Tensorflow 2和PyTorch ,微软的CNTK 2.7以后再也不继续更新(https://docs.microsoft.com/zh-cn/cognitive-toolkit/releasenotes/cntk_2_7_release_notes),Build 2019 微软也发布了ML.NET 1.0 ,这是一个面向机器学习开发者的新框架。能够说2019年是机器学习社区普及化的一年,全部的这些发布清楚地代表了IT行业的发展方向。从数据集改进模型到新的模型更新,以及优化硬件。git

ML.NET一直在微软的研究部门的工做。这些创新已经用于他们本身的产品,如Windows Defender,Microsoft Office(Powerpoint设计理念,Excel图表推荐),Azure机器学习,PowerBI。 ML.NET旨在提供终端工做流程,以便在机器学习(预处理,特征工程,建模,评估和操做)的各个步骤中将ML用于.NET应用程序。github

ML.NET 1.0提供如下关键组件:windows

  • 数据表示
  • 机器学习任务(分类,回归,异常检测等)
  • 数据特征工程

机器学习模型应该让分析师的生活更轻松,如今甚至能够构建这些模型,由于新框架的设计考虑了AutoML。除了一般的机器学习任务外,ML.NET还支持AutoML。api

对于机器学习初学者,Microsoft开发人员建议从Visual Studio中的ML.NET模型构建器和任何平台上的ML.NET CLI开始。对于能够随时构建模型的场景,AutoML API也很是方便。app

使用ML.NET模型构建器,只需右键单击便可向应用程序添加机器学习。框架

image

资料来源:微软机器学习

在命令行使用ML.NET

还引入了另外一个工具ML.NET CLI(命令行工具),它容许使用AutoML和ML.NET生成ML.NET模型。ML.NET CLI快速遍历特定ML任务的数据集(目前支持回归和分类)并生成最佳模型。ide

CLI除了生成最佳模型外,还容许用户为最佳性能模型生成模型训练和 消费模型代码。工具

ML.NET CLI是跨平台的,是.NET CLI 的全局工具。Visual Studio扩展ML.NET Model Builder 还使用ML.NET CLI提供模型构建器功能。性能

安装ML.NET CLI:

dotnet tool install -g mlnet

这是使用回归预测出租车票价的代码

加载数据集

IDataView trainingDataView = mlContext.Data.LoadFromTextFile(TrainDataPath, hasHeader: true);

IDataView testDataView = mlContext.Data.LoadFromTextFile(TestDataPath, hasHeader: true);

运行AutoML二进制分类

ExperimentResult experimentResult = mlContext.Auto().CreateRegressionExperiment(ExperimentTime).Execute(trainingDataView, LabelColumnName, progressHandler: new RegressionExperimentProgressHandler());

模型评估

ITransformer model = experimentResult.BestRun.Model;

并使用测试数据集评估其质量(taxi-fare-test.csv)。

Regression.Evaluate() 计算已知票价与模型预测值之间的差别,以生成各类指标。

var predictions = trainedModel.Transform(testDataView);

var metrics = mlContext.Regression.Evaluate(predictions,scoreColumnName:“Score”);

建立预测引擎

var predEngine = mlContext.Model.CreatePredictionEngine<TaxiTrip, TaxiTripFarePrediction>(model);

计算分数

var predictedResult = predEngine.Predict(taxiTripSample);

上面是使用Visual Studio内部的模型构建器以及CLI命令测试AutoML,还有一个API能够在.Net应用程序中使用它,使用很是简单,添加[ Microsoft.ML.AutoML ] nuget包到项目中就可使用API 进行工做

image

ML.Net示例仓库中有一整套示例。能够重用了Common文件夹中的一些类来经过API使用AutoML 。

参考

相关文章
相关标签/搜索