codec => plain { charset => "GB2312" }
将GB2312 的文本编码,转为UTF-8 的编码java
filebeat.prospectors: - input_type: log paths: - c:\Users\Administrator\Desktop\performanceTrace.txt encoding: GB2312
if ([message] =~ "^20.*-\ task\ request,.*,start\ time.*") { #用正则需删除的多余行 drop {} }
2020-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59 #需删除的行 -- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End -- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
(1)日志示例:react
2020-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59 -- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End -- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
match => { "message" => "^20.*-\ task\ request,.*,start\ time\:%{TIMESTAMP_ISO8601:RequestTime}" } match => { "message" => "^--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End.*" } match => { "message" => "^--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End.*" } ... 等多行
(2)日志示例:linux
# 这是一条INFO 日志 2018-09-06 21:21:40.536 [490343b4207b39e5,490343b4207b39e5] [reactor-http-epoll-4] INFO c.w.w.p.i.config.SecurityFilter - [filter,75] - skipFlag:false uri:/report-server/daily/queryDailyReportChannel authorization:GbUzq6IElKkvRswreIHd8Xv/YMDd885jyINObc543vx2H+0lhdu0p5bOu0Vd9PT+jgxJpXHYyZiPgQmyio5Sfg== # 这个一条ERROR日志 2018-09-06 21:21:15.863 [548809be071dd887,548809be071dd887] [reactor-http-epoll-4] ERROR c.w.w.c.e.WebExceptionHandler - [handle,34] - 系统异常:/report-server/game/queryPartnerGameReport\ncom.wbgg.wbcommon.core.base.exception.BusinessException: 您的帐号未登陆,请登陆后再操做!\n\tat com.wbgg.wbcommon.core.base.wrapper.Wrapper.check(Wrapper.java:155)\n\tat com.wbgg.wbgateway.pc.infrastructure.config.SecurityFilter.filter(SecurityFilter.java:86)\n\tat org.springframework.cloud.gateway.handler.FilteringWebHandler$GatewayFilterAdapter.filter(FilteringWebHandler.java:135)\n\tat org.springframework.cloud.gateway.filter.OrderedGatewayFilter.filter(OrderedGatewayFilter.java:44)\n\tat org.springframework.cloud.gateway.handler.FilteringWebHandler$DefaultGatewayFilterChain.lambda$filter$0(FilteringWebHandler.java:117)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.Mono.subscribe(Mono.java:3695)\n\tat reactor.core.publisher.MonoIgnoreThen$ThenIgnoreMain.drain(MonoIgnoreThen.java:172)\n\tat reactor.core.publisher.MonoIgnoreThen.subscribe(MonoIgnoreThen.java:56)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFlatMap$FlatMapMain.onNext(MonoFlatMap.java:150)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxSwitchIfEmpty$SwitchIfEmptySubscriber.onNext(FluxSwitchIfEmpty.java:67)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.innerNext(FluxConcatMap.java:275)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapInner.onNext(FluxConcatMap.java:849)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxSwitchIfEmpty$SwitchIfEmptySubscriber.onNext(FluxSwitchIfEmpty.java:67)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1505)\n\tat reactor.core.publisher.MonoFlatMap$FlatMapInner.onNext(MonoFlatMap.java:241)\n\tat reactor.core.publisher.Operators$ScalarSubscription.request(Operators.java:2070)\n\tat reactor.core.publisher.MonoFlatMap$FlatMapInner.onSubscribe(MonoFlatMap.java:230)\n\tat reactor.core.publisher.MonoJust.subscribe(MonoJust.java:54)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFlatMap$FlatMapMain.onNext(MonoFlatMap.java:150)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.innerNext(FluxConcatMap.java:275)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapInner.onNext(FluxConcatMap.java:849)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxOnErrorResume$ResumeSubscriber.onNext(FluxOnErrorResume.java:73)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxPeek$PeekSubscriber.onNext(FluxPeek.java:192)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1505)\n\tat reactor.core.publisher.MonoFilterWhen$MonoFilterWhenMain.innerResult(MonoFilterWhen.java:193)\n\tat reactor.core.publisher.MonoFilterWhen$FilterWhenInner.onNext(MonoFilterWhen.java:260)\n\tat reactor.core.publisher.MonoFilterWhen$FilterWhenInner.onNext(MonoFilterWhen.java:228)\n\tat reactor.core.publisher.Operators$ScalarSubscription.request(Operators.java:2070)\n\tat reactor.core.publisher.MonoFilterWhen$FilterWhenInner.onSubscribe(MonoFilterWhen.java:249)\n\tat reactor.core.publisher.MonoJust.subscribe(MonoJust.java:54)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.Mono.subscribe(Mono.java:3695)\n\tat reactor.core.publisher.MonoFilterWhen$MonoFilterWhenMain.onNext(MonoFilterWhen.java:150)\n\tat reactor.core.publisher.Operators$ScalarSubscription.request(Operators.java:2070)\n\tat reactor.core.publisher.MonoFilterWhen$MonoFilterWhenMain.onSubscribe(MonoFilterWhen.java:103)\n\tat reactor.core.publisher.MonoJust.subscribe(MonoJust.java:54)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFilterWhen.subscribe(MonoFilterWhen.java:56)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoPeek.subscribe(MonoPeek.java:71)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.Mono.subscribe(Mono.java:3695)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.drain(FluxConcatMap.java:442)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.onNext(FluxConcatMap.java:244)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxDematerialize$DematerializeSubscriber.onNext(FluxDematerialize.java:114)\n\tat reactor.core.publisher.FluxDematerialize$DematerializeSubscriber.onNext(FluxDematerialize.java:42)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drainAsync(FluxFlattenIterable.java:395)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drain(FluxFlattenIterable.java:638)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.onNext(FluxFlattenIterable.java:242)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxPeekFuseable$PeekFuseableSubscriber.onNext(FluxPeekFuseable.java:204)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1505)\n\tat reactor.core.publisher.MonoCollectList$MonoBufferAllSubscriber.onComplete(MonoCollectList.java:118)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.DrainUtils.postCompleteDrain(DrainUtils.java:131)\n\tat reactor.core.publisher.DrainUtils.postComplete(DrainUtils.java:186)\n\tat reactor.core.publisher.FluxMaterialize$MaterializeSubscriber.onComplete(FluxMaterialize.java:134)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drainAsync(FluxFlattenIterable.java:325)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drain(FluxFlattenIterable.java:638)\n\tat reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.onComplete(FluxFlattenIterable.java:259)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.FluxMapFuseable$MapFuseableSubscriber.onComplete(FluxMapFuseable.java:144)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1508)\n\tat reactor.core.publisher.MonoCollectList$MonoBufferAllSubscriber.onComplete(MonoCollectList.java:118)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.FluxFlatMap$FlatMapMain.checkTerminated(FluxFlatMap.java:794)\n\tat reactor.core.publisher.FluxFlatMap$FlatMapMain.drainLoop(FluxFlatMap.java:560)\n\tat reactor.core.publisher.FluxFlatMap$FlatMapMain.drain(FluxFlatMap.java:540)\n\tat reactor.core.publisher.FluxFlatMap$FlatMapMain.onComplete(FluxFlatMap.java:426)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)\n\tat reactor.core.publisher.FluxIterable$IterableSubscription.slowPath(FluxIterable.java:265)\n\tat reactor.core.publisher.FluxIterable$IterableSubscription.request(FluxIterable.java:201)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.request(ScopePassingSpanSubscriber.java:79)\n\tat reactor.core.publisher.FluxFlatMap$FlatMapMain.onSubscribe(FluxFlatMap.java:335)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onSubscribe(ScopePassingSpanSubscriber.java:71)\n\tat reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:139)\n\tat reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:63)\n\tat reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)\n\tat reactor.core.publisher.FluxFlatMap.subscribe(FluxFlatMap.java:97)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.MonoCollectList.subscribe(MonoCollectList.java:59)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoMapFuseable.subscribe(MonoMapFuseable.java:59)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFlattenIterable.subscribe(MonoFlattenIterable.java:101)\n\tat reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)\n\tat reactor.core.publisher.FluxMaterialize.subscribe(FluxMaterialize.java:40)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.MonoCollectList.subscribe(MonoCollectList.java:59)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoPeekFuseable.subscribe(MonoPeekFuseable.java:74)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFlattenIterable.subscribe(MonoFlattenIterable.java:101)\n\tat reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)\n\tat reactor.core.publisher.FluxDematerialize.subscribe(FluxDematerialize.java:39)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.FluxDefer.subscribe(FluxDefer.java:54)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.FluxConcatMap.subscribe(FluxConcatMap.java:121)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.MonoNext.subscribe(MonoNext.java:40)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoMap.subscribe(MonoMap.java:55)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:60)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoSwitchIfEmpty.subscribe(MonoSwitchIfEmpty.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoMap.subscribe(MonoMap.java:55)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.Mono.subscribe(Mono.java:3695)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.drain(FluxConcatMap.java:442)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.onNext(FluxConcatMap.java:244)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)\n\tat reactor.core.publisher.FluxIterable$IterableSubscription.slowPath(FluxIterable.java:243)\n\tat reactor.core.publisher.FluxIterable$IterableSubscription.request(FluxIterable.java:201)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.request(ScopePassingSpanSubscriber.java:79)\n\tat reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.onSubscribe(FluxConcatMap.java:229)\n\tat org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onSubscribe(ScopePassingSpanSubscriber.java:71)\n\tat reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:139)\n\tat reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:63)\n\tat reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)\n\tat reactor.core.publisher.FluxConcatMap.subscribe(FluxConcatMap.java:121)\n\tat reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)\n\tat reactor.core.publisher.MonoNext.subscribe(MonoNext.java:40)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoSwitchIfEmpty.subscribe(MonoSwitchIfEmpty.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:60)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:60)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat org.springframework.cloud.sleuth.instrument.web.TraceWebFilter$MonoWebFilterTrace.subscribe(TraceWebFilter.java:180)\n\tat reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.MonoPeekTerminal.subscribe(MonoPeekTerminal.java:61)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)\n\tat reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)\n\tat reactor.core.publisher.Mono.subscribe(Mono.java:3695)\n\tat reactor.core.publisher.MonoIgnoreThen$ThenIgnoreMain.drain(MonoIgnoreThen.java:172)\n\tat reactor.core.publisher.MonoIgnoreThen.subscribe(MonoIgnoreThen.java:56)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoPeekFuseable.subscribe(MonoPeekFuseable.java:70)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.core.publisher.MonoPeekTerminal.subscribe(MonoPeekTerminal.java:61)\n\tat reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)\n\tat reactor.netty.http.server.HttpServerHandle.onStateChange(HttpServerHandle.java:64)\n\tat reactor.netty.tcp.TcpServerBind$ChildObserver.onStateChange(TcpServerBind.java:226)\n\tat reactor.netty.http.server.HttpServerOperations.onInboundNext(HttpServerOperations.java:434)\n\tat reactor.netty.channel.ChannelOperationsHandler.channelRead(ChannelOperationsHandler.java:141)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)\n\tat io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352)\n\tat reactor.netty.http.server.HttpTrafficHandler.channelRead(HttpTrafficHandler.java:160)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)\n\tat io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352)\n\tat io.netty.channel.CombinedChannelDuplexHandler$DelegatingChannelHandlerContext.fireChannelRead(CombinedChannelDuplexHandler.java:438)\n\tat io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:328)\n\tat io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:302)\n\tat io.netty.channel.CombinedChannelDuplexHandler.channelRead(CombinedChannelDuplexHandler.java:253)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)\n\tat io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352)\n\tat io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1422)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)\n\tat io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)\n\tat io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:931)\n\tat io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799)\n\tat io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:433)\n\tat io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:330)\n\tat io.netty.util.concurrent.SingleThreadEventExecutor$6.run(SingleThreadEventExecutor.java:1044)\n\tat io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)\n\tat java.lang.Thread.run(Thread.java:748)
input { kafka { id => "test-kafka-input" bootstrap_servers => ["192.168.0.250:9092"] # kafka地址 group_id => "logstash" # kafka group topics => ["test", "filebeat"] # kafka topics codec => json # 设定输入类型为json } } filter { # mutate { # gsub => [ "message", "\r", "" ] # 替换掉换行符 # } grok { match => ["message","%{TIMESTAMP_ISO8601:timestamp}\s+%{SYSLOG5424SD:uid}\s+%{SYSLOG5424SD:threadid}\s+%{LOGLEVEL:loglevel}\s+%{JAVACLASS:javaclass}\s+.?\s+%{SYSLOG5424SD}\s+.?\s+%{GREEDYDATA:message}"] # 配置正则表达式和标签匹配日志 overwrite => ["message"] # 将上面%{GREEDYDATA:message} 标签覆盖到message上 } date { match => [ "timestamp", "yyyy-MM-dd HH:mm:ss,SSS" ] # 配置timestamp 时间格式 target => "@timestamp" # 将上面grok正则匹配的标签timestamp 覆盖到默认date "@timestamp" 上面,以便kibana中看到打印的最新时间 } # 下面这段是为了解决Elasticsearch 默认时间是0时区,不是东八区,因此默认显示时间比东八区少8个小时,这时咱们经过ruby 进行时间格式的修改,增长8个小时,示例以下: ruby { code => "event.set('timestamp', event.get('@timestamp').time.localtime + 8*60*60)" } ruby { code => "event.set('@timestamp',event.get('timestamp'))" } # 配置要删除的多余的一些字符串,经过mutate模块进行删除 mutate { remove_field => ["timestamp","hostname","tags","stream","agent","ecs","input","[kubernetes][container][name]","[kubernetes][labels][pod-template-hash]","[kubernetes][pod][uid]","[kubernetes][replicaset]","@version","[log][offset]"] } json { source => "@fields" # 删除filebeat 自带的不须要的元数据 remove_field => [ "beat","@fields","fields","index_name","offset","source","message","time","tags"] } # json { # source => "message" # remove_field => [ "message" ] # } # multiline { # pattern => "^\d{4}-\d{1,2}-\d{1,2}\s\d{1,2}:\d{1,2}:\d{1,2}" # negate => true # what => "previous" # } } output { elasticsearch { hosts => ["http://192.168.0.250:9200"] user => logstash_admin password => "YHkdypsPKqw5gaWKE" index => "game-filebeat-%{+YYYY.MM.dd}" } #file { # path => "/test/bak/test.txt" #} }
(1)示例:ios
① 日志golang
2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59 -- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End -- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
② logstash grok 对合并后多行的处理(合并多行后续都同样,以下)web
filter { grok { match => { "message" => "^%{TIMESTAMP_ISO8601:InsertTime}\ .*-\ task\ request,.*,start\ time:%{TIMESTAMP_ISO8601:RequestTime}\n--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End\n--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End" } } }
(2)在filebeat中使用multiline 插件(推荐)正则表达式
① 介绍multilineredis
pattern:正则匹配从哪行合并spring
negate:true/false,匹配到pattern 部分开始合并,仍是不配到的合并json
match:after/before(需本身理解)
after:匹配到pattern 部分后合并,注意:这种状况最后一行日志不会被匹配处理
before:匹配到pattern 部分前合并(推荐)
② 5.5版本以后(before为例)
filebeat.prospectors: - input_type: log paths: - /root/performanceTrace* fields: type: zidonghualog multiline.pattern: '.*\"WaitInterval\":.*--\ End' multiline.negate: true multiline.match: before
③ 5.5版本以前(after为例)
filebeat.prospectors: - input_type: log paths: - /root/performanceTrace* input_type: log multiline: pattern: '^20.*' negate: true match: after
(3)在logstash input中使用multiline 插件(没有filebeat 时推荐)
① 介绍multiline
pattern:正则匹配从哪行合并
negate:true/false,匹配到pattern 部分开始合并,仍是不配到的合并
what:previous/next(需本身理解)
previous:至关于filebeat 的after
next:至关于filebeat 的before
② 用法
input { file { path => ["/root/logs/log2"] start_position => "beginning" codec => multiline { pattern => "^20.*" negate => true what => "previous" } } }
(4)在logstash filter中使用multiline 插件(不推荐)
(a)不推荐的缘由:
① filter设置multiline后,pipline worker会自动将为1
② 5.5 版本官方把multiline 去除了,要使用的话需下载,下载命令以下:
/usr/share/logstash/bin/logstash-plugin install logstash-filter-multiline
(b)示例:
filter { multiline { pattern => "^20.*" negate => true what => "previous" } }
2018-03-20 10:44:01 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59
date { match => ["InsertTime","YYYY-MM-dd HH:mm:ss "] remove_field => "InsertTime" }
注:
match => ["timestamp" ,"dd/MMM/YYYY H:m:s Z"]
匹配这个字段,字段的格式为:日日/月月月/年年年年 时/分/秒 时区
也能够写为:match => ["timestamp","ISO8601"](推荐)
就是将匹配日志中时间的key 替换为@timestamp 的时间,由于@timestamp 的时间是日志送到logstash 的时间,并非日志中真正的时间。
① 在filebeat 的配置中添加type 分类
filebeat: prospectors: - paths: - /mnt/data_total/WebApiDebugLog.txt* fields: type: WebApiDebugLog_total - paths: - /mnt/data_request/WebApiDebugLog.txt* fields: type: WebApiDebugLog_request - paths: - /mnt/data_report/WebApiDebugLog.txt* fields: type: WebApiDebugLog_report
② 在logstash filter中使用if,可进行对不一样类进行不一样处理
filter { if [fields][type] == "WebApiDebugLog_request" { #对request 类日志 if ([message] =~ "^20.*-\ task\ report,.*,start\ time.*") { #删除report 行 drop {} } grok { match => {"... ..."} } }
③ 在logstash output中使用if
if [fields][type] == "WebApiDebugLog_total" { elasticsearch { hosts => ["6.6.6.6:9200"] index => "logstashl-WebApiDebugLog_total-%{+YYYY.MM.dd}" document_type => "WebApiDebugLog_total_logs" }
假设每条日志250 Byte
① logstash硬件Linux:1cpu 4GRAM
每秒500条日志 去掉ruby每秒660条日志 去掉grok后每秒1000条数据
② filebeat硬件Linux:1cpu 4GRAM
每秒2500-3500条数据 天天每台机器可处理:24h*60min*60sec*3000*250Byte=64,800,000,000Bytes,约64G
③ 瓶颈在logstash 从redis中取数据存入ES,开启一个logstash,每秒约处理6000条数据;开启两个logstash,每秒约处理10000条数据(cpu已基本跑满);
④ logstash的启动过程占用大量系统资源,由于脚本中要检查java、ruby以及其余环境变量,启动后资源占用会恢复到正常状态。
① logstash因为集成了众多插件,如grok,ruby,因此相比beat是重量级的;
② logstash启动后占用资源更多,若是硬件资源足够则无需考虑两者差别;
③ logstash基于JVM,支持跨平台;而beat使用golang编写,AIX不支持;
④ AIX 64bit平台上须要安装jdk(jre) 1.7 32bit,64bit的不支持;
⑤ filebeat能够直接输入到ES,可是系统中存在logstash直接输入到ES的状况,这将形成不一样的索引类型形成检索复杂,最好统一输入到els 的源。
logstash/filter 总之各有千秋,可是,我推荐选择:在每一个须要收集的日志服务器上配置filebeat,由于轻量级,用于收集日志;再统一输出给logstash,作对日志的处理;最后统一由logstash 输出给es。中间也开增长kafka消息队列进行缓存。
① pipeline 线程数,官方建议是等于CPU内核数
默认配置 ---> pipeline.workers: 2
可优化为 ---> pipeline.workers: CPU内核数(或几倍cpu内核数)
② 实际output 时的线程数
默认配置 ---> pipeline.output.workers: 1
可优化为 ---> pipeline.output.workers: 不超过pipeline 线程数
③ 每次发送的事件数
默认配置 ---> pipeline.batch.size: 125
可优化为 ---> pipeline.batch.size: 1000
④ 发送延时
默认配置 ---> pipeline.batch.delay: 5
可优化为 ---> pipeline.batch.size: 10
经过设置-w参数指定pipeline worker数量,也可直接修改配置文件logstash.yml。这会提升filter和output的线程数,若是须要的话,将其设置为cpu核心数的几倍是安全的,线程在I/O上是空闲的。
默认每一个输出在一个pipeline worker线程上活动,能够在输出output 中设置workers设置,不要将该值设置大于pipeline worker数。
还能够设置输出的batch_size数,例如ES输出与batch size一致。
filter设置multiline后,pipline worker会自动将为1,若是使用filebeat,建议在beat中就使用multiline,若是使用logstash做为shipper,建议在input 中设置multiline,不要在filter中设置multiline。
Logstash是一个基于Java开发的程序,须要运行在JVM中,能够经过配置jvm.options来针对JVM进行设定。好比内存的最大最小、垃圾清理机制等等。JVM的内存分配不能太大不能过小,太大会拖慢操做系统。过小致使没法启动。默认以下:
-Xms256m # 最小使用内存 -Xmx1g # 最大使用内存
(1)filebeat能够直接输入到logstash(indexer),但logstash没有存储功能,若是须要重启须要先停全部连入的beat,再停logstash,形成运维麻烦;另外若是logstash发生异常则会丢失数据;引入Redis做为数据缓冲池,当logstash异常中止后能够从Redis的客户端看到数据缓存在Redis中;
(2)Redis可使用list(最长支持4,294,967,295条)或发布订阅存储模式;
(3)redis 作elk 缓冲队列的优化:
① bind 0.0.0.0 #不要监听本地端口
② requirepass ilinux.io #加密码,为了安全运行
③ 只作队列,不必持久存储,把全部持久化功能关掉:快照(RDB文件)和追加式文件(AOF文件),性能更好
save "" 禁用快照 appendonly no 关闭RDB
④ 把内存的淘汰策略关掉,把内存空间最大
maxmemory 0 #maxmemory为0的时候表示咱们对Redis的内存使用没有限制
(a) /etc/sysctl.conf 配置
vim /etc/sysctl.conf
vm.swappiness = 1 # ES 推荐将此参数设置为 1,大幅下降 swap 分区的大小,强制最大程度的使用内存,注意,这里不要设置为 0, 这会极可能会形成 OOM net.core.somaxconn = 65535 # 定义了每一个端口最大的监听队列的长度 vm.max_map_count= 262144 # 限制一个进程能够拥有的VMA(虚拟内存区域)的数量。虚拟内存区域是一个连续的虚拟地址空间区域。当VMA 的数量超过这个值,OOM fs.file-max = 518144 # 设置 Linux 内核分配的文件句柄的最大数量
[root@elasticsearch]# sysctl -p 生效一下
(b)limits.conf 配置
vim /etc/security/limits.conf elasticsearch soft nofile 65535 elasticsearch hard nofile 65535 elasticsearch soft memlock unlimited elasticsearch hard memlock unlimited
(c)为了使以上参数永久生效,还要设置两个地方
vim /etc/pam.d/common-session-noninteractive vim /etc/pam.d/common-session 添加以下属性: session required pam_limits.so 可能需重启后生效
-Xms2g -Xmx2g
① 将最小堆大小(Xms)和最大堆大小(Xmx)设置为彼此相等。
② Elasticsearch可用的堆越多,可用于缓存的内存就越多。但请注意,太多的堆可能会使您长时间垃圾收集暂停。
③ 设置Xmx为不超过物理RAM的50%,以确保有足够的物理内存留给内核文件系统缓存。
④ 不要设置Xmx为JVM用于压缩对象指针的临界值以上;确切的截止值有所不一样,但接近32 GB。不要超过32G,若是空间大,多跑几个实例,不要让一个实例太大内存
① vim elasticsearch.yml
bootstrap.memory_lock: true #锁住内存,不使用swap #缓存、线程等优化以下 bootstrap.mlockall: true transport.tcp.compress: true indices.fielddata.cache.size: 40% indices.cache.filter.size: 30% indices.cache.filter.terms.size: 1024mb threadpool: search: type: cached size: 100 queue_size: 2000
② 设置环境变量
vim /etc/profile.d/elasticsearch.sh export ES_HEAP_SIZE=2g #Heap Size不超过物理内存的一半,且小于32G
① ES是分布式存储,当设置一样的cluster.name后会自动发现并加入集群;
② 集群会自动选举一个master,当master宕机后从新选举;
③ 为防止"脑裂",集群中个数最好为奇数个
④ 为有效管理节点,可关闭广播 discovery.zen.ping.multicast.enabled: false,并设置单播节点组discovery.zen.ping.unicast.hosts: ["ip1", "ip2", "ip3"]
Logstash和其链接的服务运行速度一致,它能够和输入、输出的速度同样快。
① CPU
注意CPU是否过载。在Linux/Unix系统中可使用top -H查看进程参数以及总计。
若是CPU使用太高,直接跳到检查JVM堆的章节并检查Logstash worker设置。
② Memory
注意Logstash是运行在Java虚拟机中的,因此它只会用到你分配给它的最大内存。
检查其余应用使用大量内存的状况,这将形成Logstash使用硬盘swap,这种状况会在应用占用内存超出物理内存范围时。
③ I/O 监控磁盘I/O检查磁盘饱和度
使用Logstash plugin(例如使用文件输出)磁盘会发生饱和。
当发生大量错误,Logstash生成大量错误日志时磁盘也会发生饱和。
在Linux中,可以使用iostat,dstat或者其余命令监控磁盘I/O
④ 监控网络I/O
当使用大量网络操做的input、output时,会致使网络饱和。
在Linux中可以使用dstat或iftop监控网络状况。
heap设置过小会致使CPU使用率太高,这是由于JVM的垃圾回收机制致使的。
一个快速检查该设置的方法是将heap设置为两倍大小而后检测性能改进。不要将heap设置超过物理内存大小,保留至少1G内存给操做系统和其余进程。
你可使用相似jmap命令行或VisualVM更加精确的计算JVM heap