IOSTAT详解

 

iostat 监视I/O子系统

iostat是I/O statistics(输入/输出统计)的缩写,用来动态监视系统的磁盘操做活动。html

1. 命令格式

iostat[参数][时间][次数]python

2. 命令功能

经过iostat方便查看CPU、网卡、tty设备、磁盘、CD-ROM 等等设备的活动状况, 负载信息。ios

3. 命令参数

  • -C 显示CPU使用状况
  • -d 显示磁盘使用状况
  • -k 以 KB 为单位显示
  • -m 以 M 为单位显示
  • -N 显示磁盘阵列(LVM) 信息
  • -n 显示NFS 使用状况
  • -p[磁盘] 显示磁盘和分区的状况
  • -t 显示终端和CPU的信息
  • -x 显示详细信息
  • -V 显示版本信息

4. 工具实例

实例1:显示全部设备负载状况

/root$iostat
Linux 2.6.32-279.el6.x86_64 (colin)   07/16/2014      _x86_64_        (4 CPU)

avg-cpu:  %user   %nice %system %iowait  %steal   %idle
10.81    0.00   14.11    0.18    0.00   74.90

Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
sda               1.95         1.48        70.88    9145160  437100644
dm-0              3.08         0.55        24.34    3392770  150087080
dm-1              5.83         0.93        46.49    5714522  286724168
dm-2              0.01         0.00         0.05      23930     289288
cpu属性值说明:
  • %user:CPU处在用户模式下的时间百分比。
  • %nice:CPU处在带NICE值的用户模式下的时间百分比。
  • %system:CPU处在系统模式下的时间百分比。
  • %iowait:CPU等待输入输出完成时间的百分比。
  • %steal:管理程序维护另外一个虚拟处理器时,虚拟CPU的无心识等待时间百分比。
  • %idle:CPU空闲时间百分比。

注:若是%iowait的值太高,表示硬盘存在I/O瓶颈,%idle值高,表示CPU较空闲,若是%idle值高但系统响应慢时,有多是CPU等待分配内存,此时应加大内存容量。%idle值若是持续低于10,那么系统的CPU处理能力相对较低,代表系统中最须要解决的资源是CPU。算法

disk属性值说明:
  • rrqm/s: 每秒进行 merge 的读操做数目。即 rmerge/s
  • wrqm/s: 每秒进行 merge 的写操做数目。即 wmerge/s
  • r/s: 每秒完成的读 I/O 设备次数。即 rio/s
  • w/s: 每秒完成的写 I/O 设备次数。即 wio/s
  • rsec/s: 每秒读扇区数。即 rsect/s
  • wsec/s: 每秒写扇区数。即 wsect/s
  • rkB/s: 每秒读K字节数。是 rsect/s 的一半,由于每扇区大小为512字节。
  • wkB/s: 每秒写K字节数。是 wsect/s 的一半。
  • avgrq-sz: 平均每次设备I/O操做的数据大小 (扇区)。
  • avgqu-sz: 平均I/O队列长度。
  • await: 平均每次设备I/O操做的等待时间 (毫秒)。
  • svctm: 平均每次设备I/O操做的服务时间 (毫秒)。
  • %util: 一秒中有百分之多少的时间用于 I/O 操做,即被io消耗的cpu百分比

备注:若是 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。若是 svctm 比较接近 await,说明 I/O 几乎没有等待时间;若是 await 远大于 svctm,说明I/O 队列太长,io响应太慢,则须要进行必要优化。若是avgqu-sz比较大,也表示有当量io在等待。express

实例2:定时显示全部信息

/root$iostat 2 3
Linux 2.6.32-279.el6.x86_64 (colin)   07/16/2014      _x86_64_        (4 CPU)

avg-cpu:  %user   %nice %system %iowait  %steal   %idle
10.81    0.00   14.11    0.18    0.00   74.90

Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
sda               1.95         1.48        70.88    9145160  437106156
dm-0              3.08         0.55        24.34    3392770  150088376
dm-1              5.83         0.93        46.49    5714522  286728384
dm-2              0.01         0.00         0.05      23930     289288

avg-cpu:  %user   %nice %system %iowait  %steal   %idle
22.62    0.00   19.67    0.26    0.00   57.46

Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
sda               2.50         0.00        28.00          0         56
dm-0              0.00         0.00         0.00          0          0
dm-1              3.50         0.00        28.00          0         56
dm-2              0.00         0.00         0.00          0          0

avg-cpu:  %user   %nice %system %iowait  %steal   %idle
22.69    0.00   19.62    0.00    0.00   57.69

Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
sda               0.00         0.00         0.00          0          0
dm-0              0.00         0.00         0.00          0          0
dm-1              0.00         0.00         0.00          0          0
dm-2              0.00         0.00         0.00          0          0

说明:每隔 2秒刷新显示,且显示3次服务器

实例3:查看TPS和吞吐量

/root$iostat -d -k 1 1
Linux 2.6.32-279.el6.x86_64 (colin)   07/16/2014      _x86_64_        (4 CPU)

Device:            tps    kB_read/s    kB_wrtn/s    kB_read    kB_wrtn
sda               1.95         0.74        35.44    4572712  218559410
dm-0              3.08         0.28        12.17    1696513   75045968
dm-1              5.83         0.46        23.25    2857265  143368744
dm-2              0.01         0.00         0.02      11965     144644
  • tps:该设备每秒的传输次数(Indicate the number of transfers per second that were issued to the device.)。“一次传输”意思是“一次I/O请求”。多个逻辑请求可能会被合并为“一次I/O请求”。“一次传输”请求的大小是未知的。
  • kB_read/s:每秒从设备(drive expressed)读取的数据量;
  • kB_wrtn/s:每秒向设备(drive expressed)写入的数据量;
  • kB_read:读取的总数据量;kB_wrtn:写入的总数量数据量;

这些单位都为Kilobytes。工具

上面的例子中,咱们能够看到磁盘sda以及它的各个分区的统计数据,当时统计的磁盘总TPS是1.95,下面是各个分区的TPS。(由于是瞬间值,因此总TPS并不严格等于各个分区TPS的总和)post

实例4:查看设备使用率(%util)和响应时间(await)

/root$iostat -d -x -k 1 1
Linux 2.6.32-279.el6.x86_64 (colin)   07/16/2014      _x86_64_        (4 CPU)

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await  svctm  %util
sda               0.02     7.25    0.04    1.90     0.74    35.47    37.15     0.04   19.13   5.58   1.09
dm-0              0.00     0.00    0.04    3.05     0.28    12.18     8.07     0.65  209.01   1.11   0.34
dm-1              0.00     0.00    0.02    5.82     0.46    23.26     8.13     0.43   74.33   1.30   0.76
dm-2              0.00     0.00    0.00    0.01     0.00     0.02     8.00     0.00    5.41   3.28   0.00
  • rrqm/s: 每秒进行 merge 的读操做数目.即 delta(rmerge)/s
  • wrqm/s: 每秒进行 merge 的写操做数目.即 delta(wmerge)/s
  • r/s: 每秒完成的读 I/O 设备次数.即 delta(rio)/s
  • w/s: 每秒完成的写 I/O 设备次数.即 delta(wio)/s
  • rsec/s: 每秒读扇区数.即 delta(rsect)/s
  • wsec/s: 每秒写扇区数.即 delta(wsect)/s
  • rkB/s: 每秒读K字节数.是 rsect/s 的一半,由于每扇区大小为512字节.(须要计算)
  • wkB/s: 每秒写K字节数.是 wsect/s 的一半.(须要计算)
  • avgrq-sz:平均每次设备I/O操做的数据大小 (扇区).delta(rsect+wsect)/delta(rio+wio)
  • avgqu-sz:平均I/O队列长度.即 delta(aveq)/s/1000 (由于aveq的单位为毫秒).
  • await: 平均每次设备I/O操做的等待时间 (毫秒).即 delta(ruse+wuse)/delta(rio+wio)
  • svctm: 平均每次设备I/O操做的服务时间 (毫秒).即 delta(use)/delta(rio+wio)
  • %util: 一秒中有百分之多少的时间用于 I/O 操做,或者说一秒中有多少时间 I/O 队列是非空的,即 delta(use)/s/1000 (由于use的单位为毫秒)

若是 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。 idle小于70% IO压力就较大了,通常读取速度有较多的wait。 同时能够结合vmstat 查看查看b参数(等待资源的进程数)和wa参数(IO等待所占用的CPU时间的百分比,高过30%时IO压力高)。性能

另外 await 的参数也要多和 svctm 来参考。差的太高就必定有 IO 的问题。优化

avgqu-sz 也是个作 IO 调优时须要注意的地方,这个就是直接每次操做的数据的大小,若是次数多,但数据拿的小的话,其实 IO 也会很小。若是数据拿的大,才IO 的数据会高。也能够经过 avgqu-sz × ( r/s or w/s ) = rsec/s or wsec/s。也就是讲,读定速度是这个来决定的。

svctm 通常要小于 await (由于同时等待的请求的等待时间被重复计算了),svctm 的大小通常和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接致使 svctm 的增长。await 的大小通常取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。若是 svctm 比较接近 await,说明 I/O 几乎没有等待时间;若是 await 远大于 svctm,说明 I/O 队列太长,应用获得的响应时间变慢,若是响应时间超过了用户能够允许的范围,这时能够考虑更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU。

队列长度(avgqu-sz)也可做为衡量系统 I/O 负荷的指标,但因为 avgqu-sz 是按照单位时间的平均值,因此不能反映瞬间的 I/O 洪水。

形象的比喻:
  • r/s+w/s 相似于交款人的总数
  • 平均队列长度(avgqu-sz)相似于单位时间里平均排队人的个数
  • 平均服务时间(svctm)相似于收银员的收款速度
  • 平均等待时间(await)相似于平均每人的等待时间
  • 平均I/O数据(avgrq-sz)相似于平均每人所买的东西多少
  • I/O 操做率 (%util)相似于收款台前有人排队的时间比例

设备IO操做:总IO(io)/s = r/s(读) +w/s(写)

平均等待时间=单个I/O服务器时间*(1+2+...+请求总数-1)/请求总数

每秒发出的I/0请求不少,可是平均队列就4,表示这些请求比较均匀,大部分处理仍是比较及时。

相关文章
相关标签/搜索