(持续整理)python
数组阈值处理数组
""" img 为图像数组,同时也是numpy数组 将img数据小于min的都设为min,同时将大于max的都设为max """ img[np.where(img < min)] = min img[np.where(img > 250)] = max
归一化和中心化dom
min = np.min(img) max = np.max(img) center = (min + max) / 2 img = (img - center) /(max - min) * 2
最大联通域测试
from skimage import measure def max_connected_domain_3D(arr): # 取相同数字的最大连通域 labels = measure.label(arr) # <1.2s t = np.bincount(labels.flatten())[1:] # <1.5s max_pixel = np.argmax(t) + 1 # 位置变了,去除了0 labels[labels != max_pixel] = 0 labels[labels == max_pixel] = 1 return labels.astype(np.uint8) # 测试 arr = [[1, 1, 0, 3], [1, 0, 3, 3], [0, 1, 3, 3], [0, 0, 0, 0]] arr = np.asarray(arr) print(arr) print(max_connected_domain_3D(arr))
\[ 1 1 0 3\\ 1 0 3 3\\ 0 1 3 3\\ 0 0 0 0\\ \]
\[ \Downarrow \]
\[ 0 0 0 1\\ 0 0 1 1\\ 0 0 1 1\\ 0 0 0 0 \]ui
arr = np.squeeze(arr) # 从数组的形状中删除单维度条目,即把shape中为1的维度去掉 y = np.transpose(y,(1,2,0)) # 将数组的轴交换 (0, 1, 2) => (1, 2, 0) """ 出处为写nrrd文件的时候,能够考虑nrrd的数组存储形式与正常数组维度不一致 """
绘制模型spa
from keras.utils import plot_model plot_model(model, "RUnet.png", True)
democode
from keras import models from keras import layers from keras import regularizers from keras.utils import plot_model def get_model(x, y, z): model = models.Sequential() model.add(layers.Conv3D(16, (3, 3, 2), activation='relu', input_shape=(x, y, z, 1))) model.add(layers.BatchNormalization()) model.add(layers.Conv3D(8, (3, 3, 2), activation='relu', kernel_regularizer=regularizers.l2(0.1))) model.add(layers.BatchNormalization()) model.add(layers.Conv3D(8, (3, 3, 2), activation='relu', kernel_regularizer=regularizers.l2(0.1))) model.add(layers.BatchNormalization()) model.add(layers.Conv3D(8, (3, 3, 1), activation='relu', kernel_regularizer=regularizers.l2(0.1))) model.add(layers.Dropout(rate=0.1)) model.add(layers.BatchNormalization()) model.add(layers.Flatten()) model.add(layers.BatchNormalization()) model.add(layers.Dense(13, activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dense(8, activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dense(8, activation='relu')) model.add(layers.Dense(2, activation='sigmoid')) model.summary() return model if __name__ == '__main__': model = get_model(125, 125, 10) plot_model(model, r"C:\Users\fan\Desktop\model.png", True)
效果图
orm
注:须要安装graphvizblog
数据混淆get
def data_confusion(data, label): # 进行数据混淆 permutation = np.random.permutation(label.shape[0]) shuffled_data = data[permutation, :, :] shuffled_label = label[permutation] return shuffled_data, shuffled_label