环境的搭建能够参考另外一篇文章。java
须要下载一个文件(windows默认保存在C:\Users\Administrator\AppData\Local\Temp\dl4j_Mnist)。文件存在git。若是网络很差。建议手动下载并解压。而后注释掉代码中的下载方法便可。如图所示:git
训练须要一段时间等待便可。时间长短取决于本身电脑配置。windows
package org.deeplearning4j.examples.dataexamples; import org.datavec.image.loader.NativeImageLoader; import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; import org.deeplearning4j.util.ModelSerializer; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization; import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import javax.swing.*; import java.io.File; import java.util.Arrays; import java.util.List; /** * * 给定用户一个文件选择框来选中要测试的手写数字图像 * 0-9数字 白色或者黑色背景进行识别 */ public class MnistImagePipelineLoadChooser { private static Logger log = LoggerFactory.getLogger(MnistImagePipelineLoadChooser.class); /* Create a popup window to allow you to chose an image file to test against the trained Neural Network Chosen images will be automatically scaled to 28*28 grayscale */ public static String fileChose(){ JFileChooser fc = new JFileChooser(); int ret = fc.showOpenDialog(null); if (ret == JFileChooser.APPROVE_OPTION) { File file = fc.getSelectedFile(); String filename = file.getAbsolutePath(); return filename; } else { return null; } } public static void main(String[] args) throws Exception{ int height = 28; int width = 28; int channels = 1; List<Integer> labelList = Arrays.asList(0,1,2,3,4,5,6,7,8,9); // pop up file chooser String filechose = fileChose().toString(); //LOAD NEURAL NETWORK // MnistImagePipelineExampleSave训练并保存模型 File locationToSave = new File("trained_mnist_model.zip"); // 检查保存的模型是否存在 if(locationToSave.exists()){ System.out.println("\n######存在保存的训练模型######\n"); }else{ System.out.println("\n\n#######File not found!#######"); System.out.println("This example depends on running "); System.out.println("MnistImagePipelineExampleSave"); System.out.println("Run that Example First"); System.out.println("#############################\n\n"); System.exit(0); } MultiLayerNetwork model = ModelSerializer.restoreMultiLayerNetwork(locationToSave); log.info("*********TEST YOUR IMAGE AGAINST SAVED NETWORK********"); // 选择一个文件 File file = new File(filechose); // 使用NativeImageLoader转换为数值矩阵 NativeImageLoader loader = new NativeImageLoader(height, width, channels); // 获得图像并赋值INDArray INDArray image = loader.asMatrix(file); // 0-255 // 0-1 DataNormalization scaler = new ImagePreProcessingScaler(0,1); scaler.transform(image); // 传递到神经网络 并获得几率值 INDArray output = model.output(image); log.info("## The FILE CHOSEN WAS " + filechose); log.info("## The Neural Nets Pediction ##"); log.info("## list of probabilities per label ##"); //log.info("## List of Labels in Order## "); //有序状态 log.info(output.toString()); log.info(labelList.toString()); } }
######Saved Model Found###### o.n.l.f.Nd4jBackend - Loaded [CpuBackend] backend o.n.n.NativeOpsHolder - Number of threads used for NativeOps: 2 o.n.n.Nd4jBlas - Number of threads used for BLAS: 2 o.n.l.a.o.e.DefaultOpExecutioner - Backend used: [CPU]; OS: [Windows 7] o.n.l.a.o.e.DefaultOpExecutioner - Cores: [4]; Memory: [1.8GB]; o.n.l.a.o.e.DefaultOpExecutioner - Blas vendor: [OPENBLAS] o.d.n.m.MultiLayerNetwork - Starting MultiLayerNetwork with WorkspaceModes set to [training: NONE; inference: SEPARATE] o.d.e.d.MnistImagePipelineLoadChooser - *********TEST YOUR IMAGE AGAINST SAVED NETWORK******** o.d.e.d.MnistImagePipelineLoadChooser - ## The FILE CHOSEN WAS C:\Users\Administrator\Desktop\93.png o.d.e.d.MnistImagePipelineLoadChooser - ## The Neural Nets Pediction ## o.d.e.d.MnistImagePipelineLoadChooser - ## list of probabilities per label ## o.d.e.d.MnistImagePipelineLoadChooser - [0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00] o.d.e.d.MnistImagePipelineLoadChooser - [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 图中的数字为: 3 数字的置信度为:100.0% Process finished with exit code 0
选择的图片为:api
可见模型对黑白的手写数字识别度还算是能够的。网络
相关资料。建议仍是去官网查阅。本博客只是进行上手实践分布式
https://deeplearning4j.org/cn/测试