目标: 监控Oracle某张记录表,有新增数据则获取表数据,并推送到微信企业。java
流程: Kafka实时监控Oracle指定表,获取该表操做信息(日志),使用Spark Structured Streaming消费Kafka,获取数据后清洗后存入指定目录,Python实时监控该目录,提取文本里面数据并推送到微信。(Oracle一台服务器,Kafka及Spark在另一台服务器)python
架构: Oracle+Kafka+Spark Structured Streaming+Python
linux
centos7
oracle 11g
apache-maven-3.6.3-bin.tar.gz
kafka-connect-oracle-master.zip
hadoop-2.7.1.tar.gz
kafka_2.11-2.4.1.tgz (scala版本必须与系统及链接spark的jar包一致,这里是2.11)
spark-2.4.0-bin-without-hadoop.tgz
spark-streaming-kafka-0-8_2.11-2.4.0.jar
Java 1.8
python 3.6git
1、Oracle侧github
这边设置比较简单,使用SYS或者SYSTEM帐户开启归档日志及附加日志便可,通常实际工做出于数据安全考虑日志都会开启状态,故再也不多赘述,有搭建及开启问题能够随时私信。sql
2、Kafka侧数据库
①配置maven,并添加进环境变量apache
#下载地址:http://maven.apache.org/download.cgi #解压 全部配置文件默认放在/usr/local路径 tar xvf apache-maven-3.6.3-bin.tar.gz -C /usr/local/ #修改环境变量 vi /etc/profile #加入下面内容 export MAVEN_HOME=/usr/local/apache-maven export PATH=$PATH:${MAVEN_HOME}/bin #刷新配置 source /ect/profile
②配置kafka-connect-oracle-master,config文件按oracle侧信息配置,而后使用maven工具编译。json
#压缩包下载地址:https://github.com/erdemcer/kafka-connect-oracle #解压 unzip kafka-connect-oracle-master.zip #修改config下的配置文件 vi kafka-connect-oracle-master/config/OracleSourceConnector.properties #修改内容以下: db.name.alias=dbserver #oracle实例名称:select instance_name from v$instance tasks.max=1 topic=cdczztar #kafka主体名称 db.name=DBSERVER #oracle服务器:select name from v$database; db.hostname=192.168.81.159 #oracle服务器地址 db.port=1521 #oracle端口,通常默认1521 db.user=test #数据库用户名 db.user.password=123456 #数据库密码 db.fetch.size=1 table.whitelist=LINHL.LHL_TEST #须要监控的表名,可使用*号监控全部,必须大写 table.blacklist= #不监控的表名,没有为空,缺乏该行会报错 parse.dml.data=true reset.offset=true start.scn= multitenant=false #编译 ,成功会有提示,并生成target文件夹 cd /usr/local/kafka-connect-oracle-master mvn clean package
③解压kafka,并放入前面master文件夹下的几个jar包及配置文件bootstrap
#解压 下载地址:http://kafka.apache.org/downloads tar xvf kafka_2.11-2.4.1.tgz -C /usr/local/ #更名 mv ./kafka_2.11-2.4.1 ./kafka #复制配置文件 cp /usr/local/kafka-connect-oracle-master/target/kafka-connect-oracle-1.0.71.jar /usr/local/kafka/libs/ cp /usr/local/kafka-connect-oracle-master/lib/ojdbc7.jar /usr/local/kafka/libs/ cp /usr/local/kafka-connect-oracle-master/config/OracleSourceConnector.properties /usr/local/kafka/config/
④开启Kafka
#进入Kafka文件夹 cd /usr/local/kafka/bin/ #下面全都在单独的窗口开启服务,勿关闭窗口,测试状态,故没有在后台运行 #启动zookeeper ./zookeeper-server-start.sh ../config/zookeeper.properties #启动kafka服务 ./kafka-server-start.sh ../config/server.properties #创建topic-cdczztar ./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic cdczztar #查看全部topic ./kafka-topics.sh --zookeeper localhost:2181 --list #启动链接oracle ./connect-standalone.sh ../config/connect-standalone.properties ../config/OracleSourceConnector.properties #启动消费端 #消费端此处只是为了展现用,后续使用spark作消费端 ./kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --topic cdczztar
3、Spark侧
Structured Streaming须要启用HDFS,这里都在本地测试环境实现,所以关于java及hadoop的安装,能够参考这篇的伪分布式配置dblab.xmu.edu.cn/blog/install-hadoop
①配置
#解压 #官网能够下载,没有资源请私信 tar -zxf spark-2.4.0-bin-without-hadoop.tgz -C /usr/local/ #重命名 mv ./spark-2.4.0-bin-without-hadoop ./spark #修改配置文件 cd /usr/local/spark cp ./conf/spark-env.sh.template ./conf/spark-env.sh vi ./conf/spark-env.sh #加入下面内容 export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath):/usr/local/spark/examples/jars/*:/usr/local/spark/jars/kafka/*:/usr/local/kafka/libs/* #修改系统环境变量 vi /etc/profile #加入下面内容 export HADOOP_HOME=/usr/local/hadoop export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native export JAVA_HOME=/opt/java/jdk1.8.0_261 export JRE_HOME=${JAVA_HOME}/jre export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib export PATH=$PATH:${JAVA_HOME}/bin:/usr/local/hbase/bin export SPARK_HOME=/usr/local/spark export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/lib/py4j-0.10.7-src.zip:/usr/local/python3/lib/python3.6/site-packages/:$PYTHONPATH export PYSPARK_PYTHON=python3 export PATH=$HADOOP_HOME/bin:$SPARK_HOME/bin:$PATH #更新配置 source /etc/profile #在jars目录创建kafka文件夹,把kafka全部jar包放到该目录 cp /usr/local/spark-streaming-kafka-0-8_2.11-2.4.0.jar /usr/local/spark/jars/kafka cp /usr/local/kafka/libs/* /usr/local/spark/jars/kafka
②Structured Streaming脚本创建
#!/usr/bin/env python3 import re from functools import partial from pyspark.sql.functions import * from pyspark.sql import SparkSession if __name__ == "__main__": spark = SparkSession \ .builder \ .appName("StructuredKafkaWordCount") \ .getOrCreate() spark.sparkContext.setLogLevel('WARN') #只提示警示信息 lines = spark \ #使用spark streaming则是基于KakfkaUtils包使用createDirectStream .readStream \ .format("kafka") \ .option("kafka.bootstrap.servers", "localhost:9092") \ .option("subscribe", 'cdczztar') \ #要消费的topic .load().selectExpr("CAST(value AS STRING)") #lines.printSchema() #正则处理,根据实际数据处理,kafka获取后是oracle日志,在这只提取表插入的值 pattern = 'data":(.+)}' fields = partial(regexp_extract, str="value", pattern=pattern) words = lines.select(fields(idx=1).alias("values")) #输出模式:存入文件 query = words \ .writeStream \ .outputMode("append") \ .format("csv") \ .option("path","file:///tmp/filesink") \ #存到服务器地址 .option("checkpointLocation","file:///tmp/file-sink-cp") \ .trigger(processingTime="10 seconds") \ .start() query.awaitTermination() #新开一个服务器窗口运行,这边已经在代码目录下 /usr/local/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.0 spark.py
③运行python实时打开写入的文件,提取信息并推送到微信端
import csv import pyinotify #这个包只支持linux,若是是window系统可使用watchdog,一个原理及写法 import time import requests import json import datetime import pandas as pd CORPID = "******" #企业微信id SECRET = "*******" #企业微信密钥 AGENTID = 1000041 #企业微信端口 multi_event = pyinotify.IN_CREATE #只对create这个动做作监控 wm = pyinotify.WatchManager() #继承ProcessEvent后,对process_IN_CREATE方法重写 class MyHandler(pyinotify.ProcessEvent): def send_msg_to_wechat(self, content): record = '{}\n'.format(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) s = requests.session() url1 = "https://qyapi.weixin.qq.com/cgi-bin/gettoken?corpid={0}&corpsecret={1}".format(CORPID, SECRET) rep = s.get(url1) record += "{}\n".format(json.loads(rep.content)) if rep.status_code == 200: token = json.loads(rep.content)['access_token'] record += "获取token成功\n" else: record += "获取token失败\n" token = None url2 = "https://qyapi.weixin.qq.com/cgi-bin/message/send?access_token={}".format(token) header = { "Content-Type": "application/json" } form_data = { "touser": "@all", "toparty": " PartyID1 | PartyID2 ", "totag": " TagID1 | TagID2 ", "msgtype": "text", "agentid": AGENTID, "text": { "content": content }, "safe": 0 } rep = s.post(url2, data=json.dumps(form_data).encode('utf-8'), headers=header) if rep.status_code == 200: res = json.loads(rep.content) record += "发送成功\n" else: record += "发送失败\n" res = None return res def process_IN_CREATE(self, event): try: if '_spark_metadata' in event.pathname or '.crc' in event.pathname: pass else: print(event.pathname) f_path = event.pathname #此处坑,streaming那边生成文件还没写入数据就会触发该任务,不sleep打开的是空白文件 time.sleep(5) df = pd.read_csv(r'' + f_path, encoding='utf8', names=['value'], sep='/') send_str = df.iloc[0, 0].replace('\\', '').replace(',"before":null}', '').replace('"','') print(send_str) self.send_msg_to_wechat('中间库预警:' + send_str) except: pass handler = MyHandler() notifier = pyinotify.Notifier(wm,handler) wm.add_watch('/tmp/filesink/',multi_event) notifier.loop()
微信端消息以下:
4、问题点
还有下面几个问题还没实现,有思路还请随时评论私信交流,感谢
在structured streaming消费了kafka信息后,是否能够直接把消息推送到微信端口?
python监控文件有新增文件路径能够即时获取,可是要获取内容须要等待数据写入,sleep的方式不稳定,是否有方法能够判断数据已经写完就读取该文件?
学习交流,有任何问题还请随时评论指出交流。