第五天,知乎问题和回答字段提取和存入数据库

 

 对应github地址:知乎和拉钩css

 

摘要:
1. Scrapy的Request类支持设置cookie属性,要在爬虫请求中带上cookie,能够重载Spider的start_requests方法。start_requests()方法能够返回一个请求给爬虫的起始网站,这个返回的请求至关于start_urls,start_requests()返回的请求会替代start_urls里的请求
 
2. json.loads把json字符串转变为python格式的,json.dumps把python格式字符串转为json格式
 
 
 
一. selenium进行模拟登录
进入项目目录后,执行下面代码
scrapy genspider zhihu_sel www.zhihu.com
 
1. 模拟登录知乎并获取cookie信息
from selenium import webdriver import time import pickle def start_requests(self): browser = webdriver.Chrome() browser.get('https://www.zhihu.com/signin') input1 = browser.find_element_by_css_selector("input[name=username]") input1.send_keys('xx') input2 = browser.find_element_by_css_selector("input[name=password]") input2.send_keys('xx') button = browser.find_element_by_class_name('SignFlow-submitButton') button.click() time.sleep(10) Cookies = browser.get_cookies() print(Cookies) cookie_dict = {} for cookie in Cookies: f = open('./cookie/' + cookie['name']+'.zhihu', 'wb') pickle.dump(cookie, f) f.close() cookie_dict[cookie['name']] = cookie['value'] browser.close() return [scrapy.Request(url=self.start_urls[0], dont_filter=True, cookies=cookie_dict, headers=self.headers)] 使用scrapy读取本地cookie文件的时候,须要在加上最后一行代码 并在zhihu_sql.py中添加以下信息,这样能够保证后续的request请求都把cookie信息自动加上去 custom_settings = { "COOKIES_ENABLED": True, "DOWNLOAD_DELAY": 1.5, }

 

 
注意:
1)只能使用chrome60版本和相应的驱动,不然会报grant type错误
2) www.zhihu.com/signin这个网站地址很简洁方便模拟登录 ,网上搜的地址很麻烦,登不上
3)  经测试,代码中cookie文件的保存位置./cookie必须是在cmd中进入虚拟环境后,使用mkdir cookie命令创建目录,其余状况都不能保存文件到cookie目录中
 
 
2. 修改调试的main.py,把jobbole注释掉,添加知乎信息
 
 
3. 使用requests来模拟登录知乎,本身查资料里的zhihu_login_requests.py文件
将cookie信息保存在本地,下次登录直接读取cookie本地文件进行登录
注意:
1)csrf会在用户名和密码的session信息中加入一段随机码并加密存储在session_value中,保存在数据库中的session包括session_key, session_value, 有效时间。
 
 
 
 
二. 知乎分析和数据表设计
 
1. scrapy shell中增长user_agent信息
有时候代码访问网页的时候不加user_agent信息,会访问不到页面内容,在cmd虚拟环境中执行
scrapy shell -s USER_AGENT="头信息" https://www.zhihu.com/question/34659999
而后执行以下代码,能够把网页内容写入到自定义文件中
 
 
2. 安装插件JsonView能够有序的查看json信息,须要加载解压包里的webcontent
而后双击ajax网页连接就可查看
 
 
3. 问题和回答数据表设计
 
ask表
注意:ask表中并无create_time和update_time字段,因此在设计item时能够不添加这两个字段,可是能够在answer的ajax数据中找到,能够后面在ask表中加上
 
 
answer表
 
注意:用户回答能够是匿名的,因此author_id可为空
 
 
 
 
 
 
 
三. item loader方式提取question
 
1. scrapy默认是使用深度优先算法来提取信息
 
2. 在F12开发者工具中,Request Header中通常能找到以下两条信息
 
3. 为防止被ban,执行以下措施
1)添加头信息
headers = { # HOST就是要访问的域名地址,https://blog.csdn.net/zhangqi_gsts/article/details/50775341
    "HOST": "www.zhihu.com", # referer表示从哪一个网页跳转过来的,可防止盗链。https://blog.csdn.net/shenqueying/article/details/79426884
    "Referer": "https://www.zhihu.com", 'User-Agent': "user-agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
                  "Chrome/60.0.3112.113 Safari/537.36" }

 

 
2)禁用cookie和设置下载延迟
# 重点:防止被ban
custom_settings = { "COOKIES_ENABLED": True, "DOWNLOAD_DELAY": 1 }

 

 
 
 
3. 编写parse函数
selenium模拟登录后,会首先执行parse函数
"""
提取出html页面中的全部url 并跟踪这些url进行一步爬取
若是提取的url中格式为 /question/xxx 就下载以后直接进入解析函数
"""
def parse(self, response): all_urls = response.css("a::attr(href)").extract() all_urls = [parse.urljoin(response.url, url) for url in all_urls] # 使用lambda函数对于每个url进行过滤,若是是true放回列表,返回false去除。
    all_urls = filter(lambda x: True if x.startswith("https") else False, all_urls) for url in all_urls: # 具体问题以及具体答案的url咱们都要提取出来。用或关系实现,要用小括号括起来。由于具体答案的url没斜杠
        match_obj = re.match("(.*zhihu.com/question/(\d+))(/|$).*", url) if match_obj: # 若是提取到question相关的页面则下载后交由提取函数进行提取
            request_url = match_obj.group(1) yield scrapy.Request(request_url, headers=self.headers, callback=self.parse_question) else: # 注释这里方便调试
            pass
            # 若是不是question页面则直接进一步跟踪
            yield scrapy.Request(url, headers=self.headers, callback=self.parse)

 

 
说明:
1) 拼接相对地址,并过滤出来以https开头的URL
from urllib import parse url1 = response.css("a::attr(href)").extract() url2 = [parse.urljoin(response.url, url) for url in url1]

 

 
2) x是url2中的每个值,若是x是以https开头的就为True,而后就能够过滤出来存放到url3中
url3 = filter(lambda x: True if x.startswith("https") else False, url2) 若是以为很差理解,能够以下写 url_list = [] for url in url3: if url.startwith("https"): url_list = url_list.append(url)

 

 
 
 
4. 补充内容,filter,map
 
filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,若是要转换为列表,可使用 list() 来转换。
该接收两个参数,第一个为函数,第二个为序列,序列的每一个元素做为参数传递给函数进行判,而后返回 True 或 False,最后将返回 True 的元素放到新列表中。
def is_odd(n): return n % 2 == 1 tmplist = filter(is_odd, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) newlist = list(tmplist) print(newlist)

 

 
map()接收一个函数 f 和一个或多个list,并经过把函数 f 依次做用在 list 的每一个元素上,获得一个新的 list 并返回。
# 一个列表的状况
>>> map(lambda x: x ** 2, [1, 2, 3, 4, 5]) [1, 4, 9, 16, 25] # 提供了两个列表,对相同位置的列表数据进行相加 
>>> map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10]) [3, 7, 11, 15, 19]

 

 
 
 
5. 参看定义好的数据库字段,在items.py中定义问题和答案的item
# 知乎问题的item
class ZhihuQuestionItem(scrapy.Item): zhihu_id = scrapy.Field() topoics = scrapy.Field() url = scrapy.Field() title = scrapy.Field() content = scrapy.Field() answer_num = scrapy.Field() comments_num = scrapy.Field() watch_user_num = scrapy.Field() click_num = scrapy.Field() crawl_time = scrapy.Field() crawl_update_time = scrapy.Field() # 知乎回答的item
class ZhihuAnswerItem(scrapy.Item): zhihu_id = scrapy.Field() url = scrapy.Field() question_id = scrapy.Field() author_id = scrapy.Field() content = scrapy.Field() praise_num = scrapy.Field() comments_num = scrapy.Field() create_time = scrapy.Field() update_time = scrapy.Field() crawl_time = scrapy.Field() crawl_update_time = scrapy.Field()

 

 
 
 
 
6. 在zhuhu.py中编写parse_question函数,从页面中提取问题的各字段
 
使用下面命令能够测试知乎字段爬取是否有效
scrapy shell -s USER_AGENT="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)  Chrome/60.0.3112.113 Safari/537.36" https://www.zhihu.com/question/57195513scrapy
 
例如:提取一个回答的方法
# response.css(".QuestionAnswers-answers .List-item:nth-child(1) .RichContent-inner span::text").extract()
 
def parse_question(self, response): # 处理新版本, 新版本有惟一类QuestionHeader-title来设置标题,老版本没这个类
    if "QuestionHeader-title" in response.text: match_obj = re.match("(.*zhihu.com/question/(\d+))(/|$).*", response.url) if match_obj: # group(2)取到的为(\d+)中的内容
            question_id = int(match_obj.group(2)) # 使用scrapy默认提供的ItemLoder使代码更简洁,首先实例化
        item_loader = ItemLoader(item=ZhihuQuestionItem(), response=response) item_loader.add_value("url_object_id", get_md5(response.url)) item_loader.add_value("zhihu_id", question_id) item_loader.add_css("title", "h1.QuestionHeader-title::text") # 下面一个回答内容的例子,可参考下,提取content的方法提取了全部回答内容
        # response.css(".QuestionAnswers-answers .List-item:nth-child(1) .RichContent-inner span::text").extract()
        item_loader.add_css("content", ".QuestionAnswers-answers") item_loader.add_css("topics", ".QuestionHeader-topics .Tag.QuestionTopic .Popover div::text") item_loader.add_css("answer_num", ".List-headerText span::text") item_loader.add_css("comments_num", ".QuestionHeader-Comment button::text") # 这里的watch_user_num 包含Watch 和 click, 在clean data中分离
        item_loader.add_css("watch_user_num", ".NumberBoard-itemValue ::text") item_loader.add_value("url", response.url) question_item = item_loader.load_item() # 发起向后台具体answer的接口请求
yield scrapy.Request(self.start_answer_url.format(question_id, 20, 0), headers=self.headers, callback=self.parse_answer) yield question_item

 

 
注意
1)调试的时候能够在if "QuestionHeader-title" in response.text:处打一个断点,一路F6一步步调试,不然会报数据库的错误
 
2)使用xpath"或"的方式来提取字段
有时候不一样页面中的标题会有2种格式,好比<a>标签里的标题和<span>span标签里的标题
此时使用css的方式response.css(".zh-question-title a:text")就不能适用了,这时须要一个或的表示方式,可用xpath来实现,以下
item_loader.add_xpath("title", "//*[@id='zh-question-title']/h2/a/text()|//*[@id='zh-question-title']/h2/span/text()") 

 

 

 
7.  编写回答的处理函数 parse_answer
回答的内容是用ajax加载的,经分析发现有api接口可调用,以下面的next和previous地址
 
7.1 首先在zhuhu.py中定义一个变量来发起一个关于回答的初始请求,注意里面的变量要替换为{0},{1},{2}
start_answer_url = "https://www.zhihu.com/api/v4/questions/{0}/answers?include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action%2Cannotation_detail%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelevant_info%2Cquestion%2Cexcerpt%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cbadge%5B%2A%5D.topics&limit={1}&offset={2}&sort_by=default"
 
def parse_answer(self, response): # json.loads把json字符串转变为python格式的
    ans_json = json.loads(response.text) # 判断是否有后续页面,以及下一个页面的URL,就是页面分析中Preview里的paging信息
    is_end = ans_json["paging"]["is_end"] next_url = ans_json["paging"]["next"] # 提取answer的具体字段
    for answer in ans_json["data"]: answer_item = ZhihuAnswerItem() #answer_item["url_object_id"] = get_md5(url=answer["url"])
        answer_item["zhihu_id"] = answer["id"] answer_item["question_id"] = answer["question"]["id"] # 有时候回答是匿名的,此时author字段中没id值,那么就返回None
        answer_item["author_id"] = answer["author"]["id"] if "id" in answer["author"] else None answer_item["author_name"] = answer["author"]["name"] if "name" in answer["author"] else None answer_item["content"] = answer["content"] if "content" in answer else None answer_item["praise_num"] = answer["voteup_count"] answer_item["comments_num"] = answer["comment_count"] answer_item["url"] = "https://www.zhihu.com/question/{0}/answer/{1}".format(answer["question"]["id"], answer["id"]) answer_item["create_time"] = answer["created_time"] answer_item["update_time"] = answer["updated_time"] answer_item["crawl_time"] = datetime.now() yield answer_item # 若是不是最后一个URL,继续请求下一个页面
    if not is_end: yield scrapy.Request(next_url, headers=self.headers, callback=self.parse_answer) 

 

 
 
 
四. 数据入库
 
方法一:根据不一样的item执行不一样的mysql语句
def do_insert(self, cursor, item):
    if item.__class__.__name__ == "JobBoleArticleItem":
        insert_sql = """..."""
上面代码能够取到当前函数所在类的名字
上面这种方法把Item名字写死了,后期若是有修改就比较麻烦
 
 
方法二,能够把不一样的sql语句写在items.py中的具体项目的类中,定义一个函数来存放sql语句
 
1. 知乎问题类的item,ZhihuQuestionItem中添加以下代码
def get_insert_sql(self): # 插入知乎question表的sql语句
    insert_sql = """ insert into zhihu_question(zhihu_id, topics, url, title, content, answer_num, comments_num, watch_user_num, click_num, crawl_time ) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ON DUPLICATE KEY UPDATE content=VALUES(content), answer_num=VALUES(answer_num), comments_num=VALUES(comments_num), watch_user_num=VALUES(watch_user_num), click_num=VALUES(click_num) """
# scrapy.Field返回类型为列表
zhihu_id = self["zhihu_id"][0] topics = ",".join(self["topics"]) url = self["url"][0] title = "".join(self["title"]) content = "".join(self["content"]) # extract_num就是上面定义的get_nums,只是把它从新定义为一个经常使用函数了
answer_num = extract_num("".join(self["answer_num"])) comments_num = extract_num("".join(self["comments_num"])) # 浏览数和点击数是一块儿取出来的,而且用逗号分隔,须要单独取出来
if len(self["watch_user_num"]) == 2: watch_user_num_click = self["watch_user_num"] watch_user_num = extract_num_include_dot(watch_user_num_click[0]) click_num = extract_num_include_dot(watch_user_num_click[1]) else: watch_user_num_click = self["watch_user_num"] watch_user_num = extract_num_include_dot(watch_user_num_click[0]) click_num = 0 # 要把时间格式转为字符串格式
crawl_time = datetime.datetime.now().strftime(SQL_DATETIME_FORMAT) # 顺序要和sql语句中的保持同样
params = (zhihu_id, topics, url, title, content, answer_num, comments_num, watch_user_num, click_num, crawl_time) return insert_sql, params

 

注意:
浏览数取出来的方式,单独定义了一个函数extract_num_include_dot,早utils.common文件中
 
 
 
2,改造MysqlTwistedPipeline
def do_insert(self, cursor, item): # 根据不一样的Item构建不一样的sql语句并插入到mysql中
    insert_sql, params = item.get_insert_sql() cursor.execute(insert_sql, params) 

 

 
3. ZhihuAnswerItem(scrapy.Item)中添加插入数据代码
def get_insert_sql(self): # 插入知乎question表的sql语句
    insert_sql = """ insert into zhihu_answer(zhihu_id, url, question_id, author_id, author_name, content, comments_num, create_time, update_time, crawl_time ) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ON DUPLICATE KEY UPDATE content=VALUES(content), comments_num=VALUES(comments_num), update_time=VALUES(update_time) """
 
    # int类型转为datetime类型,须要使用fromtimestamp函数;再转为字符串类型,须要strftime函数
    create_time = datetime.datetime.fromtimestamp(self["create_time"]).strftime(SQL_DATETIME_FORMAT) update_time = datetime.datetime.fromtimestamp(self["update_time"]).strftime(SQL_DATETIME_FORMAT) params = ( self["zhihu_id"], self["url"], self["question_id"], self["author_id"], self["author_name"], self["content"], self["comments_num"], create_time, update_time, self["crawl_time"].strftime(SQL_DATETIME_FORMAT), ) return insert_sql, params

 

 
说明:
1)点赞数有点问题,要先注释掉
2)on duplicate key update字段的做用:因为咱们是用zhuhu_id为主键,重复爬取时,点赞数等字段可能会变化,可是主键不变,就会形成主键冲突,加上这个命令就不会出错了
相关文章
相关标签/搜索