#!/usr/bin/env python # __Author__: "wanyongzhen" # Date: 2017/5/9 import time import threading def addNum(): global num # 在每一个线程中都获取这个全局变量 Lock.acquire() # 每次只能有一个线程在运行Lock块的代码 temp = num time.sleep(0.01) num = temp - 1 # 对此公共变量进行-1操做 Lock.release() num = 100 # 设定一个共享变量 Lock = threading.Lock() # 定义同步锁 thread_list = [] for i in range(100): t = threading.Thread(target=addNum) t.start() thread_list.append(t) for t in thread_list: #等待全部线程执行完毕 t.join() print('Result: ', num)
#!/usr/bin/env python # __Author__: "wanyongzhen" # Date: 2017/5/9 import threading import time mutexA = threading.Lock() mutexB = threading.Lock() class MyThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): self.fun1() self.fun2() def fun1(self): mutexA.acquire() # 若是锁被占用,则阻塞在这里,等待锁的释放 print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time())) mutexB.acquire() print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time())) mutexB.release() mutexA.release() def fun2(self): mutexB.acquire() print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time())) time.sleep(0.2) mutexA.acquire() print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time())) mutexA.release() mutexB.release() if __name__ == "__main__": print("start---------------------------%s"%time.time()) for i in range(0, 10): my_thread = MyThread() my_thread.start()
#!/usr/bin/env python # __Author__: "wanyongzhen" # Date: 2017/5/9 import threading import time RLock = threading.RLock() # 得到递归锁,能够acquire屡次 class MyThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): self.fun1() self.fun2() def fun1(self): RLock.acquire() # acquire计数加1 print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time())) RLock.acquire() # acquire计数加1 print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time())) RLock.release() # acquire计数减1 RLock.release() # acquire计数减1 计数为0后其余线程就能够竞争这把锁 def fun2(self): RLock.acquire() print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time())) time.sleep(0.2) RLock.acquire() print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time())) RLock.release() RLock.release() if __name__ == "__main__": print("start---------------------------%s"%time.time()) for i in range(0, 10): my_thread = MyThread() my_thread.start()
线程的一个关键特性是每一个线程都是独立运行且状态不可预测。若是程序中的其 他线程须要经过判断某个线程的状态来肯定本身下一步的操做,这时线程同步问题就 会变得很是棘手。为了解决这些问题,咱们须要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它容许线程等待某些事件的发生。在 初始状况下,Event对象中的信号标志被设置为假。若是有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程若是将一个Event对象的信号标志设置为真,它将唤醒全部等待这个Event对象的线程。若是一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行python
#!/usr/bin/env python # __Author__: "wanyongzhen" # Date: 2017/5/9 import threading import time import logging logging.basicConfig(level=logging.DEBUG, format='(%(threadName)-10s) %(message)s',) def worker(event): logging.debug('Waiting for redis ready...') event.wait() logging.debug('redis ready, and connect to redis server and do some work [%s]', time.ctime()) time.sleep(1) def main(): readis_ready = threading.Event() # 完成线程间的通讯 至关于标志位 t1 = threading.Thread(target=worker, args=(readis_ready,), name='t1') t1.start() t2 = threading.Thread(target=worker, args=(readis_ready,), name='t2') t2.start() logging.debug('first of all, check redis server, make sure it is OK, and then trigger the redis ready event') time.sleep(3) # simulate the check progress readis_ready.set() if __name__=="__main__": main() # event.isSet():返回event的状态值; # event.wait():若是 event.isSet()==False将阻塞线程; # event.set(): 设置event的状态值为True,全部阻塞池的线程激活进入就绪状态, 等待操做系统调度; # event.clear():恢复event的状态值为False。
#!/usr/bin/env python # __Author__: "wanyongzhen" # Date: 2017/5/9 from multiprocessing import Process import os import time def info(name): print("name:",name) print('parent process:', os.getppid()) print('process id:', os.getpid()) print("------------------") time.sleep(1) def foo(name): info(name) if __name__ == '__main__': info('main process line') p1 = Process(target=info, args=('alvin',)) p2 = Process(target=foo, args=('egon',)) p1.start() p2.start() p1.join() p2.join() print("ending")
#!/usr/bin/env python # __Author__: "wanyongzhen" # Date: 2017/5/9 import time """ 传统的生产者-消费者模型是一个线程写消息,一个线程取消息,经过锁机制控制队列和等待,但一不当心就可能死锁。 若是改用协程,生产者生产消息后,直接经过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高。 """ # 注意到consumer函数是一个generator(生成器): # 任何包含yield关键字的函数都会自动成为生成器(generator)对象 def consumer(): r = '' while True: # 三、consumer经过yield拿到消息,处理,又经过yield把结果传回; # yield指令具备return关键字的做用。而后函数的堆栈会自动冻结(freeze)在这一行。 # 当函数调用者的下一次利用next()或generator.send()或for-in来再次调用该函数时, # 就会从yield代码的下一行开始,继续执行,再返回下一次迭代结果。经过这种方式,迭代器能够实现无限序列和惰性求值。 n = yield r if not n: return print('[CONSUMER] ←← Consuming %s...' % n) time.sleep(1) r = '200 OK' def produce(c): # 一、首先调用c.next()启动生成器 next(c) n = 0 while n < 5: n = n + 1 print('[PRODUCER] →→ Producing %s...' % n) # 二、而后,一旦生产了东西,经过c.send(n)切换到consumer执行; cr = c.send(n) # 四、produce拿到consumer处理的结果,继续生产下一条消息; print('[PRODUCER] Consumer return: %s' % cr) # 五、produce决定不生产了,经过c.close()关闭consumer,整个过程结束。 c.close() if __name__=='__main__': # 六、整个流程无锁,由一个线程执行,produce和consumer协做完成任务,因此称为“协程”,而非线程的抢占式多任务。 c = consumer() produce(c) ''' result: [PRODUCER] →→ Producing 1... [CONSUMER] ←← Consuming 1... [PRODUCER] Consumer return: 200 OK [PRODUCER] →→ Producing 2... [CONSUMER] ←← Consuming 2... [PRODUCER] Consumer return: 200 OK [PRODUCER] →→ Producing 3... [CONSUMER] ←← Consuming 3... [PRODUCER] Consumer return: 200 OK [PRODUCER] →→ Producing 4... [CONSUMER] ←← Consuming 4... [PRODUCER] Consumer return: 200 OK [PRODUCER] →→ Producing 5... [CONSUMER] ←← Consuming 5... [PRODUCER] Consumer return: 200 OK '''
greelet机制的主要思想是:生成器函数或者协程函数中的yield语句挂起函数的执行,直到稍后使用next()或send()操做进行恢复为止。可使用一个调度器循环在一组生成器函数之间协做多个任务。greentlet是python中实现咱们所谓的"Coroutine(协程)"的一个基础库.git
#!/usr/bin/env python # __Author__: "wanyongzhen" # Date: 2017/5/9 from greenlet import greenlet def test1(): print (12) gr2.switch() print (34) gr2.switch() def test2(): print (56) gr1.switch() print (78) gr1 = greenlet(test1) gr2 = greenlet(test2) gr1.switch()
Python经过yield提供了对协程的基本支持,可是不彻底。而第三方的gevent为Python提供了比较完善的协程支持。github
gevent是第三方库,经过greenlet实现协程,其基本思想是:redis
当一个greenlet遇到IO操做时,好比访问网络,就自动切换到其余的greenlet,等到IO操做完成,再在适当的时候切换回来继续执行。因为IO操做很是耗时,常常使程序处于等待状态,有了gevent为咱们自动切换协程,就保证总有greenlet在运行,而不是等待IO。网络
因为切换是在IO操做时自动完成,因此gevent须要修改Python自带的一些标准库,这一过程在启动时经过monkey patch完成:app
#!/usr/bin/env python # __Author__: "wanyongzhen" # Date: 2017/5/9 import gevent import time def foo(): print("running in foo") gevent.sleep(2) print("switch to foo again") def bar(): print("switch to bar") gevent.sleep(5) print("switch to bar again") start=time.time() gevent.joinall( [gevent.spawn(foo), gevent.spawn(bar)] ) print(time.time()-start)
固然,实际代码里,咱们不会用gevent.sleep()去切换协程,而是在执行到IO操做时,gevent自动切换,代码以下:函数
#!/usr/bin/env python # __Author__: "wanyongzhen" # Date: 2017/5/9 from gevent import monkey monkey.patch_all() import gevent from urllib import request import time import ssl ssl._create_default_https_context = ssl._create_unverified_context # 解决Mac上的报错 def f(url): print('GET: %s' % url) resp = request.urlopen(url) data = resp.read() print('%d bytes received from %s.' % (len(data), url)) start=time.time() gevent.joinall([ gevent.spawn(f, 'https://itk.org/'), gevent.spawn(f, 'https://www.github.com/'), gevent.spawn(f, 'https://zhihu.com/'), ]) # f('https://itk.org/') # f('https://www.github.com/') # f('https://zhihu.com/') print(time.time()-start)