以太坊事件框架

过去在学Actor模型的时候,就认为异步消息是至关的重要,在华为的时候,也深扒了一下当时产品用的消息模型,简单实用,支撑起了不少模块和业务,但也有一个缺点是和其余的框架有耦合,最近看到以太坊的事件框架,一样简单简洁,理念很适合初步接触事件框架的同窗,写文介绍一下。小程序

以太坊的事件框架是一个单独的基础模块,存在于目录go-ethereum/event中,它有2中独立的事件框架实现,老点的叫TypeMux,已经基本弃用,新的叫Feed,当前正在普遍使用。缓存

TypeMuxFeed还只是简单的事件框架,与Kafka、RocketMQ等消息系统相比,是很是的传统和简单,可是TypeMuxFeed的简单简洁,已经很好的支撑以太坊的上层模块,这是当下最好的选择。app

TypeMuxFeed各有优劣,最优秀的共同特色是,他们只依赖于Golang原始的包,彻底与以太坊的其余模块隔离开来,也就是说,你彻底能够把这两个事件框架用在本身的项目中。框架

TypeMux的特色是,你把全部的订阅塞给它就好,事件来了它自会通知你,但有可能会阻塞,通知你不是那么及时,甚至过了一段挺长的时间。异步

Feed的特色是,它一般不存在阻塞的状况,会及时的把事件通知给你,但须要你为每类事件都创建一个Feed,而后不一样的事件去不一样的Feed上订阅和发送,这其实挺烦人的,若是你用错了Feed,会致使panic。函数

接下来,介绍下这种简单事件框架的抽象模型,而后再回归到以太坊,介绍下TypeMuxFeedpost

!<--more-->ui

事件框架的抽象结构

原始事件框架抽象结构

如上图,轻量级的事件框架会把全部的被订阅的事件收集起来,而后把每一个订阅者组合成一个列表,当事件框架收到某个事件的时候,就把订阅该事件的全部订阅者找出来,而后把这个事件发给他们。this

它须要具备2个功能:spa

  1. 让订阅者订阅、取消订阅某类事件。
  2. 让发布者可以发布某个事件,而且把事件送到每一个订阅者。

若是作成完善的消息系统,就还得考虑这些特性:可用性、吞吐量、传输延迟、有序消息、消息存储、过滤、重发,这和事件框架相比就复杂上去了,咱们专一的介绍下以太坊的事件模型怎么完成上述3个功能的。

以太坊的事件模型

TypeMux是一个以太坊不太满意的事件框架,因此以太坊就搞了Feed出来,它解决了TypeMux效率低下,延迟交付的问题。接下来就先看下这个TypeMux

TypeMux:同步事件框架

TypeMux是一个同步事件框架。它的实现和上面讲的事件框架的抽象结构是彻底同样的,它维护了一个订阅表,表里维护了每一个事件的订阅者列表。它的特色:

  1. 采用多对多结构:多个事件对多个订阅者。
  2. 采用推模式,把事件/消息推送给订阅者,就像信件同样,会被送到你的信箱,你在信箱里取信就好了。
  3. 是一个同步事件框架。这也是它的缺点所在,举个例子就是:邮递员要给小红、小明送信,只有信箱里的信被小红取走后,邮递员才去给小明送信,若是小红旅游去了没法取信,邮递员就一直等在小红家,而小明一直收不到信,小明很无辜无辜啊!

看下它2个功能的实现:

  1. 订阅和取消订阅。订阅经过函数TypeMux.Subscribe(),入参为要订阅的事件类型,会返回TypeMuxSubscription给订阅者,订阅者可经过此控制订阅,经过TypeMuxSubscription.Unsubscribe() 能够取消订阅。
  2. 发布事件和传递事件。TypeMux.Post(),入参为事件类型,根据订阅表找出该事件的订阅者列表,遍历列表,依次向每一个订阅者传递事件,若是前一个没有传递完成进入阻塞,会致使后边的订阅者不能及时收到事件。

TypeMux抽象结构

TypeMux源码速递

TypeMux的精简组成:

// A TypeMux dispatches events to registered receivers. Receivers can be
// registered to handle events of certain type. Any operation
// called after mux is stopped will return ErrMuxClosed.
//
// The zero value is ready to use.
//
// Deprecated: use Feed
// 本质:哈希列表,每一个事件的订阅者都存到对于的列表里
type TypeMux struct {
    mutex   sync.RWMutex // 锁
    subm    map[reflect.Type][]*TypeMuxSubscription // 订阅表:全部事件类型的全部订阅者
    stopped bool
}

订阅:

// Subscribe creates a subscription for events of the given types. The
// subscription's channel is closed when it is unsubscribed
// or the mux is closed.
// 订阅者只传入订阅的事件类型,而后TypeMux会返回给它一个订阅对象
func (mux *TypeMux) Subscribe(types ...interface{}) *TypeMuxSubscription {
    sub := newsub(mux)
    mux.mutex.Lock()
    defer mux.mutex.Unlock()
    if mux.stopped {
        // set the status to closed so that calling Unsubscribe after this
        // call will short circuit.
        sub.closed = true
        close(sub.postC)
    } else {
        if mux.subm == nil {
            mux.subm = make(map[reflect.Type][]*TypeMuxSubscription)
        }
        for _, t := range types {
            rtyp := reflect.TypeOf(t)
            // 在同一次订阅中,不要重复订阅同一个类型的事件
            oldsubs := mux.subm[rtyp]
            if find(oldsubs, sub) != -1 {
                panic(fmt.Sprintf("event: duplicate type %s in Subscribe", rtyp))
            }
            subs := make([]*TypeMuxSubscription, len(oldsubs)+1)
            copy(subs, oldsubs)
            subs[len(oldsubs)] = sub
            mux.subm[rtyp] = subs
        }
    }
    return sub
}

取消订阅:

func (s *TypeMuxSubscription) Unsubscribe() {
    s.mux.del(s)
    s.closewait()
}

发布事件和传递事件:

// Post sends an event to all receivers registered for the given type.
// It returns ErrMuxClosed if the mux has been stopped.
// 遍历map,找到全部订阅的人,向它们传递event,同一个event对象,非拷贝,运行在调用者goroutine
func (mux *TypeMux) Post(ev interface{}) error {
    event := &TypeMuxEvent{
        Time: time.Now(),
        Data: ev,
    }
    rtyp := reflect.TypeOf(ev)
    mux.mutex.RLock()
    if mux.stopped {
        mux.mutex.RUnlock()
        return ErrMuxClosed
    }
    subs := mux.subm[rtyp]
    mux.mutex.RUnlock()
    for _, sub := range subs {
        sub.deliver(event)
    }
    return nil
}

func (s *TypeMuxSubscription) deliver(event *TypeMuxEvent) {
    // Short circuit delivery if stale event
    // 不发送过早(老)的消息
    if s.created.After(event.Time) {
        return
    }
    // Otherwise deliver the event
    s.postMu.RLock()
    defer s.postMu.RUnlock()

    select {
    case s.postC <- event:
    case <-s.closing:
    }
}

我上面指出了发送事件可能阻塞,阻塞在哪?关键就在下面这里:建立TypeMuxSubscription时,通道使用的是无缓存通道,读写是同步的,这里注定了TypeMux是一个同步事件框架,这是以太坊改用Feed的最大缘由

func newsub(mux *TypeMux) *TypeMuxSubscription {
    c := make(chan *TypeMuxEvent) // 无缓冲通道,同步读写
    return &TypeMuxSubscription{
        mux:     mux,
        created: time.Now(),
        readC:   c,
        postC:   c,
        closing: make(chan struct{}),
    }
}

Feed:流式框架

Feed是一个流式事件框架。上文强调了TypeMux是一个同步框架,也正是由于此以太坊丢弃了它,难道Feed就是一个异步框架?不必定是的,这取决于订阅者是否采用有缓存的通道,采用有缓存的通道,则Feed就是异步的,采用无缓存的通道,Feed就是同步的,把同步仍是异步的选择交给使用者

本节强调Feed的流式特色。事件本质是一个数据,接二连三的事件就组成了一个数据流,这些数据流不停的流向它的订阅者那里,而且不会阻塞在任何一个订阅者那里。

举几个不是十分恰当的例子。

  1. 公司要放中秋节,HR给全部同事都发了一封邮件,有些同事读了,有些同事没读,要到国庆节了HR又给全部同事发了一封邮件,这些邮件又进入到每一个人的邮箱,不会由于任何一我的没有读邮件,致使剩下的同事收不到邮件。
  2. 你在朋友圈给朋友旅行的照片点了个赞,每当大家共同朋友点赞或者评论的时候,你都会收到提醒,不管你看没看这些提醒,这些提醒都会不断的发过来。
  3. 你微博关注了谢娜,谢娜发了个搞笑的视频,你刷微博的时候就收到了,但也有不少人根本没刷微博,你不会由于别人没有刷,你就收不到谢娜的动态。

Feed和TypeMux相同的是,它们都是推模式,不一样的是Feed是异步的,若是有些订阅者阻塞了,不要紧,它会继续向后面的订阅者发送事件/消息。

Feed是一个一对多的事件流框架。每一个类型的事件都须要一个与之对应的Feed,订阅者经过这个Feed进行订阅事件,发布者经过这个Feed发布事件。

Feed抽象结构

看下Feed是如何实现2个功能的:

  1. 订阅和取消订阅:Feed.Subscribe(),入参是一个通道,一般是有缓冲的,就算是无缓存也不会形成Feed阻塞,Feed会校验这个通道的类型和本Feed管理的事件类型是否一致,而后把通道保存下来,返回给订阅者一个Subscription,能够经过它取消订阅和读取通道错误。
  2. 发布事件和传递事件。Feed.Send()入参是一个事件,加锁确保本类型事件只有一个发送协程正在进行,而后校验事件类型是否匹配,Feed会尝试给每一个订阅者发送事件,若是订阅者阻塞,Feed就继续尝试给下一个订阅者发送,直到给每一个订阅者发送事件,返回发送该事件的数量。

Feed源码速递

Feed定义:

// Feed implements one-to-many subscriptions where the carrier of events is a channel.
// Values sent to a Feed are delivered to all subscribed channels simultaneously.
//
// Feeds can only be used with a single type. The type is determined by the first Send or
// Subscribe operation. Subsequent calls to these methods panic if the type does not
// match.
//
// The zero value is ready to use.
// 一对多的事件订阅管理:每一个feed对象,当别人调用send的时候,会发送给全部订阅者
// 每种事件类型都有一个本身的feed,一个feed内订阅的是同一种类型的事件,得用某个事件的feed才能订阅该事件
type Feed struct {
    once      sync.Once        // ensures that init only runs once
    sendLock  chan struct{}    // sendLock has a one-element buffer and is empty when held.It protects sendCases. 这个锁确保了只有一个协程在使用go routine
    removeSub chan interface{} // interrupts Send
    sendCases caseList         // the active set of select cases used by Send,订阅的channel列表,这些channel是活跃的

    // The inbox holds newly subscribed channels until they are added to sendCases.
    mu     sync.Mutex
    inbox  caseList // 不活跃的在这里
    etype  reflect.Type
    closed bool
}

订阅事件:

// Subscribe adds a channel to the feed. Future sends will be delivered on the channel
// until the subscription is canceled. All channels added must have the same element type.
//
// The channel should have ample buffer space to avoid blocking other subscribers.
// Slow subscribers are not dropped.
// 订阅者传入接收事件的通道,feed将通道保存为case,而后返回给订阅者订阅对象
func (f *Feed) Subscribe(channel interface{}) Subscription {
    f.once.Do(f.init)

    // 通道和通道类型检查
    chanval := reflect.ValueOf(channel)
    chantyp := chanval.Type()
    if chantyp.Kind() != reflect.Chan || chantyp.ChanDir()&reflect.SendDir == 0 {
        panic(errBadChannel)
    }
    sub := &feedSub{feed: f, channel: chanval, err: make(chan error, 1)}

    f.mu.Lock()
    defer f.mu.Unlock()
    if !f.typecheck(chantyp.Elem()) {
        panic(feedTypeError{op: "Subscribe", got: chantyp, want: reflect.ChanOf(reflect.SendDir, f.etype)})
    }
    
    // 把通道保存到case
    // Add the select case to the inbox.
    // The next Send will add it to f.sendCases.
    cas := reflect.SelectCase{Dir: reflect.SelectSend, Chan: chanval}
    f.inbox = append(f.inbox, cas)
    return sub
}

发送和传递事件:这个发送是比较绕一点的,要想真正掌握其中的运行,最好写个小程序练习下。

// Send delivers to all subscribed channels simultaneously.
// It returns the number of subscribers that the value was sent to.
// 同时向全部的订阅者发送事件,返回订阅者的数量
func (f *Feed) Send(value interface{}) (nsent int) {
    rvalue := reflect.ValueOf(value)

    f.once.Do(f.init)
    <-f.sendLock // 获取发送锁

    // Add new cases from the inbox after taking the send lock.
    // 从inbox加入到sendCases,不能订阅的时候直接加入到sendCases,由于可能其余协程在调用发送
    f.mu.Lock()
    f.sendCases = append(f.sendCases, f.inbox...)
    f.inbox = nil

    // 类型检查:若是该feed不是要发送的值的类型,释放锁,而且执行panic
    if !f.typecheck(rvalue.Type()) {
        f.sendLock <- struct{}{}
        panic(feedTypeError{op: "Send", got: rvalue.Type(), want: f.etype})
    }
    f.mu.Unlock()

    // Set the sent value on all channels.
    // 把发送的值关联到每一个case/channel,每个事件都有一个feed,因此这里全是同一个事件的
    for i := firstSubSendCase; i < len(f.sendCases); i++ {
        f.sendCases[i].Send = rvalue
    }

    // Send until all channels except removeSub have been chosen. 'cases' tracks a prefix
    // of sendCases. When a send succeeds, the corresponding case moves to the end of
    // 'cases' and it shrinks by one element.
    // 全部case仍然保留在sendCases,只是用过的会移动到最后面
    cases := f.sendCases
    for {
        // Fast path: try sending without blocking before adding to the select set.
        // This should usually succeed if subscribers are fast enough and have free
        // buffer space.
        // 使用非阻塞式发送,若是不能发送就及时返回
        for i := firstSubSendCase; i < len(cases); i++ {
            // 若是发送成功,把这个case移动到末尾,因此i这个位置就是没处理过的,而后大小减1
            if cases[i].Chan.TrySend(rvalue) {
                nsent++
                cases = cases.deactivate(i)
                i--
            }
        }

        // 若是这个地方成立,表明全部订阅者都不阻塞,都发送完了
        if len(cases) == firstSubSendCase {
            break
        }

        // Select on all the receivers, waiting for them to unblock.
        // 返回一个可用的,直到不阻塞。
        chosen, recv, _ := reflect.Select(cases)
        if chosen == 0 /* <-f.removeSub */ {
            // 这个接收方要删除了,删除并缩小sendCases
            index := f.sendCases.find(recv.Interface())
            f.sendCases = f.sendCases.delete(index)
            if index >= 0 && index < len(cases) {
                // Shrink 'cases' too because the removed case was still active.
                cases = f.sendCases[:len(cases)-1]
            }
        } else {
            // reflect已经确保数据已经发送,无需再尝试发送
            cases = cases.deactivate(chosen)
            nsent++
        }
    }

    // 把sendCases中的send都标记为空
    // Forget about the sent value and hand off the send lock.
    for i := firstSubSendCase; i < len(f.sendCases); i++ {
        f.sendCases[i].Send = reflect.Value{}
    }
    f.sendLock <- struct{}{}
    return nsent
}
相关文章
相关标签/搜索