过往记忆大数据 过往记忆大数据 sql
数据分析中将两个数据集进行 Join 操做是很常见的场景。我在 这篇 文章中介绍了 Spark 支持的五种 Join 策略,本文我将给你们介绍一下 Apache Spark 中支持的 Join 类型(Join Type)。apache
目前 Apache Spark 3.0 版本中,一共支持如下七种 Join 类型:app
•INNER JOIN
•CROSS JOIN
•LEFT OUTER JOIN
•RIGHT OUTER JOIN
•FULL OUTER JOIN
•LEFT SEMI JOIN
•LEFT ANTI JOIN
在实现上,这七种 Join 对应的实现类分别以下:ide
object JoinType { def apply(typ: String): JoinType = typ.toLowerCase(Locale.ROOT).replace("_", "") match { case "inner" => Inner case "outer" | "full" | "fullouter" => FullOuter case "leftouter" | "left" => LeftOuter case "rightouter" | "right" => RightOuter case "leftsemi" | "semi" => LeftSemi case "leftanti" | "anti" => LeftAnti case "cross" => Cross case _ => val supported = Seq( "inner", "outer", "full", "fullouter", "full_outer", "leftouter", "left", "left_outer", "rightouter", "right", "right_outer", "leftsemi", "left_semi", "semi", "leftanti", "left_anti", "anti", "cross") throw new IllegalArgumentException(s"Unsupported join type '$typ'. " + "Supported join types include: " + supported.mkString("'", "', '", "'") + ".") } }
今天,我并不打算从底层代码来介绍这七种 Join 类型的实现,而是从数据分析师的角度来介绍这几种 Join 的含义和使用。在介绍下文以前,假设咱们有顾客(customer)和订单(order)相关的两张表,以下:oop
scala> val order = spark.sparkContext.parallelize(Seq( | (1, 101,2500), (2,102,1110), (3,103,500), (4 ,102,400) | )).toDF("paymentId", "customerId","amount") order: org.apache.spark.sql.DataFrame = [paymentId: int, customerId: int ... 1 more field] scala> order.show +---------+----------+------+ |paymentId|customerId|amount| +---------+----------+------+ | 1| 101| 2500| | 2| 102| 1110| | 3| 103| 500| | 4| 102| 400| +---------+----------+------+ scala> val customer = spark.sparkContext.parallelize(Seq( | (101,"iteblog") ,(102,"iteblog_hadoop") ,(103,"iteblog001"), (104,"iteblog002"), (105,"iteblog003"), (106,"iteblog004") | )).toDF("customerId", "name") customer: org.apache.spark.sql.DataFrame = [customerId: int, name: string] scala> customer.show +----------+--------------+ |customerId| name| +----------+--------------+ | 101| iteblog| | 102|iteblog_hadoop| | 103| iteblog001| | 104| iteblog002| | 105| iteblog003| | 106| iteblog004| +----------+--------------+ 准备好数据以后,如今咱们来一一介绍这些 Join 类型。
在 Spark 中,若是没有指定任何 Join 类型,那么默认就是 INNER JOIN。INNER JOIN 只会返回知足 Join 条件( join condition)的数据,这个你们用的应该比较多,具体以下:大数据
scala> val df = customer.join(order,"customerId") df: org.apache.spark.sql.DataFrame = [customerId: int, name: string ... 2 more fields] scala> df.show +----------+--------------+---------+------+ |customerId| name|paymentId|amount| +----------+--------------+---------+------+ | 101| iteblog| 1| 2500| | 103| iteblog001| 3| 500| | 102|iteblog_hadoop| 2| 1110| | 102|iteblog_hadoop| 4| 400| +----------+--------------+---------+------+
从上面能够看出,当咱们没有指定任何 Join 类型时,默认就是 INNER JOIN;在生成的结果中, Spark 自动为咱们删除了两张表都存在的 customerId。若是用图来表示的话, INNER JOIN 能够以下表示:spa
上图粉色部分就是 INNER JOIN 的结果。scala
这种类型的 Join 也称为笛卡儿积(Cartesian Product),Join 左表的每行数据都会跟右表的每行数据进行 Join,产生的结果行数为 m*n,因此在生产环境下尽可能不要用这种 Join。下面是 CROSS JOIN 的使用例子:3d
scala> val df = customer.crossJoin(order) df: org.apache.spark.sql.DataFrame = [customerId: int, name: string ... 3 more fields] scala> df.show +----------+--------------+---------+----------+------+ |customerId| name|paymentId|customerId|amount| +----------+--------------+---------+----------+------+ | 101| iteblog| 1| 101| 2500| | 101| iteblog| 2| 102| 1110| | 101| iteblog| 3| 103| 500| | 101| iteblog| 4| 102| 400| | 102|iteblog_hadoop| 1| 101| 2500| | 102|iteblog_hadoop| 2| 102| 1110| | 102|iteblog_hadoop| 3| 103| 500| | 102|iteblog_hadoop| 4| 102| 400| | 103| iteblog001| 1| 101| 2500| | 103| iteblog001| 2| 102| 1110| | 103| iteblog001| 3| 103| 500| | 103| iteblog001| 4| 102| 400| | 104| iteblog002| 1| 101| 2500| | 104| iteblog002| 2| 102| 1110| | 104| iteblog002| 3| 103| 500| | 104| iteblog002| 4| 102| 400| | 105| iteblog003| 1| 101| 2500| | 105| iteblog003| 2| 102| 1110| | 105| iteblog003| 3| 103| 500| | 105| iteblog003| 4| 102| 400| +----------+--------------+---------+----------+------+ only showing top 20 rows
LEFT OUTER JOIN 等价于 LEFT JOIN,这个 Join 的返回的结果相信你们都知道,我就不介绍了。下面三种写法都是等价的:code
val leftJoinDf = customer.join(order,Seq("customerId"), "left_outer") val leftJoinDf = customer.join(order,Seq("customerId"), "leftouter") val leftJoinDf = customer.join(order,Seq("customerId"), "left") scala> leftJoinDf.show +----------+--------------+---------+------+ |customerId| name|paymentId|amount| +----------+--------------+---------+------+ | 101| iteblog| 1| 2500| | 103| iteblog001| 3| 500| | 102|iteblog_hadoop| 2| 1110| | 102|iteblog_hadoop| 4| 400| | 105| iteblog003| null| null| | 106| iteblog004| null| null| | 104| iteblog002| null| null| +----------+--------------+---------+------+
若是用图表示的话,LEFT OUTER JOIN 能够以下所示:能够看出,参与 Join 的左表数据都会显示出来,而右表只有关联上的才会显示。
和 LEFT OUTER JOIN 相似,RIGHT OUTER JOIN 等价于 RIGHT JOIN,下面三种写法也是等价的:
val rightJoinDf = order.join(customer,Seq("customerId"), "right") val rightJoinDf = order.join(customer,Seq("customerId"), "right_outer") val rightJoinDf = order.join(customer,Seq("customerId"), "rightouter") scala> rightJoinDf.show +----------+---------+------+--------------+ |customerId|paymentId|amount| name| +----------+---------+------+--------------+ | 101| 1| 2500| iteblog| | 103| 3| 500| iteblog001| | 102| 2| 1110|iteblog_hadoop| | 102| 4| 400|iteblog_hadoop| | 105| null| null| iteblog003| | 106| null| null| iteblog004| | 104| null| null| iteblog002| +----------+---------+------+--------------+
若是用图表示的话,RIGHT OUTER JOIN 能够以下所示:能够看出,参与 Join 的右表数据都会显示出来,而左表只有关联上的才会显示。
FULL OUTER JOIN 的含义你们应该也都熟悉,我就不介绍其含义了。FULL OUTER JOIN 有如下四种写法:
val fullJoinDf = order.join(customer,Seq("customerId"), "outer") val fullJoinDf = order.join(customer,Seq("customerId"), "full") val fullJoinDf = order.join(customer,Seq("customerId"), "full_outer") val fullJoinDf = order.join(customer,Seq("customerId"), "fullouter") scala> fullJoinDf.show +----------+---------+------+--------------+ |customerId|paymentId|amount| name| +----------+---------+------+--------------+ | 101| 1| 2500| iteblog| | 103| 3| 500| iteblog001| | 102| 2| 1110|iteblog_hadoop| | 102| 4| 400|iteblog_hadoop| | 105| null| null| iteblog003| | 106| null| null| iteblog004| | 104| null| null| iteblog002| +----------+---------+------+--------------+
FULL OUTER JOIN 能够用以下图表示:
LEFT SEMI JOIN 这个你们应该知道的人相对少些,LEFT SEMI JOIN 只会返回匹配右表的数据,并且 LEFT SEMI JOIN 只会返回左表的数据,右表的数据是不会显示的,下面三种写法都是等价的:
val leftSemiJoinDf = order.join(customer,Seq("customerId"), "leftsemi") val leftSemiJoinDf = order.join(customer,Seq("customerId"), "left_semi") val leftSemiJoinDf = order.join(customer,Seq("customerId"), "semi") scala> leftSemiJoinDf.show +----------+---------+------+ |customerId|paymentId|amount| +----------+---------+------+ | 101| 1| 2500| | 103| 3| 500| | 102| 2| 1110| | 102| 4| 400| +----------+---------+------+
从上面结果能够看出,LEFT SEMI JOIN 其实能够用 IN/EXISTS 来改写:
scala> order.registerTempTable("order") warning: there was one deprecation warning (since 2.0.0); for details, enable `:setting -deprecation' or `:replay -deprecation' scala> customer.registerTempTable("customer") warning: there was one deprecation warning (since 2.0.0); for details, enable `:setting -deprecation' or `:replay -deprecation' scala> val r = spark.sql("select * from order where customerId in (select customerId from customer)") r: org.apache.spark.sql.DataFrame = [paymentId: int, customerId: int ... 1 more field] scala> r.show +---------+----------+------+ |paymentId|customerId|amount| +---------+----------+------+ | 1| 101| 2500| | 3| 103| 500| | 2| 102| 1110| | 4| 102| 400| +---------+----------+------+
LEFT SEMI JOIN 能够用下图表示:
与 LEFT SEMI JOIN 相反,LEFT ANTI JOIN 只会返回没有匹配到右表的左表数据。并且下面三种写法也是等效的:
val leftAntiJoinDf = customer.join(order,Seq("customerId"), "leftanti") val leftAntiJoinDf = customer.join(order,Seq("customerId"), "left_anti") val leftAntiJoinDf = customer.join(order,Seq("customerId"), "anti") scala> leftAntiJoinDf.show +----------+----------+ |customerId| name| +----------+----------+ | 105|iteblog003| | 106|iteblog004| | 104|iteblog002| +----------+----------+
同理,LEFT ANTI JOIN 也能够用 NOT IN 来改写:
scala> val r = spark.sql("select * from customer where customerId not in (select customerId from order)") r: org.apache.spark.sql.DataFrame = [customerId: int, name: string] scala> r.show +----------+----------+ |customerId| name| +----------+----------+ | 104|iteblog002| | 105|iteblog003| | 106|iteblog004| +----------+----------+
LEFT SEMI ANTI 能够用下图表示:
好了,Spark 七种 Join 类型已经简单介绍完了,你们能够根据不一样类型的业务场景选择不一样的 Join 类型。今天分享就到这,感谢你们关注支持。