欢迎关注微信公众号:石杉的架构笔记(id:shishan100)node

个人新课**《C2C 电商系统微服务架构120天实战训练营》在公众号儒猿技术窝**上线了,感兴趣的同窗,能够点击下方连接了解详情:面试
《C2C 电商系统微服务架构120天实战训练营》算法
1、写在前面
以前写过一篇文章(《拜托,面试请不要再问我Redis分布式锁的实现原理》),给你们说了一下Redisson这个开源框架是如何实现Redis分布式锁原理的,这篇文章再给你们聊一下ZooKeeper实现分布式锁的原理。性能优化
同理,我是直接基于比较经常使用的Curator这个开源框架,聊一下这个框架对ZooKeeper(如下简称zk)分布式锁的实现。微信
通常除了大公司是自行封装分布式锁框架以外,建议你们用这些开源框架封装好的分布式锁实现,这是一个比较快捷省事儿的方式。markdown
2、ZooKeeper分布式锁机制
接下来咱们一块儿来看看,多客户端获取及释放zk分布式锁的整个流程及背后的原理。架构
首先你们看看下面的图,若是如今有两个客户端一块儿要争抢zk上的一把分布式锁,会是个什么场景?并发
若是你们对zk还不太了解的话,建议先自行百度一下,简单了解点基本概念,好比zk有哪些节点类型等等。app
参见上图。zk里有一把锁,这个锁就是zk上的一个节点。而后呢,两个客户端都要来获取这个锁,具体是怎么来获取呢?框架
我们就假设客户端A抢先一步,对zk发起了加分布式锁的请求,这个加锁请求是用到了zk中的一个特殊的概念,叫作**“临时顺序节点”。**
简单来讲,就是直接在"my_lock"这个锁节点下,建立一个顺序节点,这个顺序节点有zk内部自行维护的一个节点序号。
好比说,第一个客户端来搞一个顺序节点,zk内部会给起个名字叫作:xxx-000001。而后第二个客户端来搞一个顺序节点,zk可能会起个名字叫作:xxx-000002。你们注意一下,最后一个数字都是依次递增的,从1开始逐次递增。zk会维护这个顺序。
因此这个时候,假如说客户端A先发起请求,就会搞出来一个顺序节点,你们看下面的图,Curator框架大概会弄成以下的样子:
你们看,客户端A发起一个加锁请求,先会在你要加锁的node下搞一个临时顺序节点,这一大坨长长的名字都是Curator框架本身生成出来的。
而后,那个最后一个数字是"1"。你们注意一下,由于客户端A是第一个发起请求的,因此给他搞出来的顺序节点的序号是"1"。
接着客户端A建立完一个顺序节点。还没完,他会查一下"my_lock"这个锁节点下的全部子节点,而且这些子节点是按照序号排序的,这个时候他大概会拿到这么一个集合:
接着客户端A会走一个关键性的判断,就是说:唉!兄弟,这个集合里,我建立的那个顺序节点,是否是排在第一个啊?
若是是的话,那我就能够加锁了啊!由于明明我就是第一个来建立顺序节点的人,因此我就是第一个尝试加分布式锁的人啊!
bingo!加锁成功!你们看下面的图,再来直观的感觉一下整个过程。
接着假如说,客户端A都加完锁了,客户端B过来想要加锁了,这个时候他会干同样的事儿:先是在"my_lock"这个锁节点下建立一个临时顺序节点,此时名字会变成相似于:

你们看看下面的图:
客户端B由于是第二个来建立顺序节点的,因此zk内部会维护序号为"2"。
接着客户端B会走加锁判断逻辑,查询"my_lock"锁节点下的全部子节点,按序号顺序排列,此时他看到的相似于:
同时检查本身建立的顺序节点,是否是集合中的第一个?
明显不是啊,此时第一个是客户端A建立的那个顺序节点,序号为"01"的那个。因此加锁失败!
加锁失败了之后,客户端B就会经过ZK的API对他的顺序节点的**上一个顺序节点加一个监听器。**zk自然就能够实现对某个节点的监听。
若是你们还不知道zk的基本用法,能够百度查阅,很是的简单。客户端B的顺序节点是:
他的上一个顺序节点,不就是下面这个吗?
即客户端A建立的那个顺序节点!
因此,客户端B会对:
这个节点加一个监听器,监听这个节点是否被删除等变化!你们看下面的图。
接着,客户端A加锁以后,可能处理了一些代码逻辑,而后就会释放锁。那么,释放锁是个什么过程呢?
其实很简单,就是把本身在zk里建立的那个顺序节点,也就是:
这个节点给删除。
删除了那个节点以后,zk会负责通知监听这个节点的监听器,也就是客户端B以前加的那个监听器,说:兄弟,你监听的那个节点被删除了,有人释放了锁。
此时客户端B的监听器感知到了上一个顺序节点被删除,也就是排在他以前的某个客户端释放了锁。
此时,就会通知客户端B从新尝试去获取锁,也就是获取"my_lock"节点下的子节点集合,此时为:
集合里此时只有客户端B建立的惟一的一个顺序节点了!
而后呢,客户端B判断本身竟然是集合中的第一个顺序节点,bingo!能够加锁了!直接完成加锁,运行后续的业务代码便可,运行完了以后再次释放锁。
3、总结
其实若是有客户端C、客户端D等N个客户端争抢一个zk分布式锁,原理都是相似的。
- 你们都是上来直接建立一个锁节点下的一个接一个的临时顺序节点
- 若是本身不是第一个节点,就对本身上一个节点加监听器
- 只要上一个节点释放锁,本身就排到前面去了,至关因而一个排队机制。
并且用临时顺序节点的另一个用意就是,若是某个客户端建立临时顺序节点以后,不当心本身宕机了也不要紧,zk感知到那个客户端宕机,会自动删除对应的临时顺序节点,至关于自动释放锁,或者是自动取消本身的排队。
最后,我们来看下用Curator框架进行加锁和释放锁的一个过程:
其实用开源框架就是这点好,方便。这个Curator框架的zk分布式锁的加锁和释放锁的实现原理,其实就是上面咱们说的那样子。
可是若是你要手动实现一套那个代码的话。仍是有点麻烦的,要考虑到各类细节,异常处理等等。因此你们若是考虑用zk分布式锁,能够参考下本文的思路。
END
若有收获,请帮忙转发,您的鼓励是做者最大的动力,谢谢!
一大波微服务、分布式、高并发、高可用的原创系列文章正在路上
欢迎扫描下方二维码,持续关注:
石杉的架构笔记(id:shishan100)
十余年BAT架构经验倾囊相授
**> **推荐阅读:** > > 一、[拜托!面试请不要再问我Spring Cloud底层原理](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Flink.juejin.im%252525252F%252525253Ftarget%252525253Dhttps%25252525253A%25252525252F%25252525252Flink.juejin.im%25252525252F%25252525253Ftarget%25252525253Dhttps%2525252525253A%2525252525252F%2525252525252Fjuejin.im%2525252525252Fpost%2525252525252F5be13b83f265da6116393fc7) > > 二、[【双11狂欢的背后】微服务注册中心如何承载大型系统的千万级访问?](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Flink.juejin.im%252525252F%252525253Ftarget%252525253Dhttps%25252525253A%25252525252F%25252525252Flink.juejin.im%25252525252F%25252525253Ftarget%25252525253Dhttps%2525252525253A%2525252525252F%2525252525252Fjuejin.im%2525252525252Fpost%2525252525252F5be3f8dcf265da613a5382ca) > > 三、[【性能优化之道】每秒上万并发下的Spring Cloud参数优化实战](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Flink.juejin.im%252525252F%252525253Ftarget%252525253Dhttps%25252525253A%25252525252F%25252525252Flink.juejin.im%25252525252F%25252525253Ftarget%25252525253Dhttps%2525252525253A%2525252525252F%2525252525252Fjuejin.im%2525252525252Fpost%2525252525252F5be83e166fb9a049a7115580) > > 四、[微服务架构如何保障双11狂欢下的99.99%高可用](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Flink.juejin.im%252525252F%252525253Ftarget%252525253Dhttps%25252525253A%25252525252F%25252525252Flink.juejin.im%25252525252F%25252525253Ftarget%25252525253Dhttps%2525252525253A%2525252525252F%2525252525252Fjuejin.im%2525252525252Fpost%2525252525252F5be99a68e51d4511a8090440) > > 五、[兄弟,用大白话告诉你小白都能听懂的Hadoop架构原理](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Flink.juejin.im%252525252F%252525253Ftarget%252525253Dhttps%25252525253A%25252525252F%25252525252Flink.juejin.im%25252525252F%25252525253Ftarget%25252525253Dhttps%2525252525253A%2525252525252F%2525252525252Fjuejin.im%2525252525252Fpost%2525252525252F5beaf02ce51d457e90196069) > > 六、[大规模集群下Hadoop NameNode如何承载每秒上千次的高并发访问](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Flink.juejin.im%252525252F%252525253Ftarget%252525253Dhttps%25252525253A%25252525252F%25252525252Flink.juejin.im%25252525252F%25252525253Ftarget%25252525253Dhttps%2525252525253A%2525252525252F%2525252525252Fjuejin.im%2525252525252Fpost%2525252525252F5bec278c5188253e64332c76) > > 七、【[性能优化的秘密】Hadoop如何将TB级大文件的上传性能优化上百倍](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Flink.juejin.im%252525252F%252525253Ftarget%252525253Dhttps%25252525253A%25252525252F%25252525252Flink.juejin.im%25252525252F%25252525253Ftarget%25252525253Dhttps%2525252525253A%2525252525252F%2525252525252Fjuejin.im%2525252525252Fpost%2525252525252F5bed82a9e51d450f9461cfc7) > > 八、[拜托,面试请不要再问我TCC分布式事务的实现原理](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Flink.juejin.im%252525252F%252525253Ftarget%252525253Dhttps%25252525253A%25252525252F%25252525252Fjuejin.im%25252525252Fpost%25252525252F5bf201f7f265da610f63528a)[坑爹呀!](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Fjuejin.im%252525252Fpost%252525252F5bf2c6b6e51d456693549af4) > > 九、[【坑爹呀!】最终一致性分布式事务如何保障实际生产中99.99%高可用?](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Fjuejin.im%252525252Fpost%252525252F5bf2c6b6e51d456693549af4) > > 十、[拜托,面试请不要再问我Redis分布式锁的实现原理!](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Fjuejin.im%252525252Fpost%252525252F5bf3f15851882526a643e207) > > **十一、****[【眼前一亮!】看Hadoop底层算法如何优雅的将大规模集群性能提高10倍以上?](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Flink.juejin.im%2525253Ftarget%2525253Dhttps%252525253A%252525252F%252525252Fjuejin.im%252525252Fpost%252525252F5bf5396f51882509a768067e)** > > **十二、****[亿级流量系统架构之如何支撑百亿级数据的存储与计算](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Flink.juejin.im%25252F%25253Ftarget%25253Dhttps%2525253A%2525252F%2525252Fjuejin.im%2525252Fpost%2525252F5bfab59fe51d4551584c7bcf)** > > 1三、[亿级流量系统架构之如何设计高容错分布式计算系统](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Flink.juejin.im%253Ftarget%253Dhttps%25253A%25252F%25252Fjuejin.im%25252Fpost%25252F5bfbeeb9f265da61407e9679) > > 1四、[亿级流量系统架构之如何设计承载百亿流量的高性能架构](https://link.juejin.im/?target=https%3A%2F%2Flink.juejin.im%3Ftarget%3Dhttps%253A%252F%252Fjuejin.im%252Fpost%252F5bfd2df1e51d4574b133dd3a) > > 1五、[亿级流量系统架构之如何设计每秒十万查询的高并发架构](https://link.juejin.im/?target=https%3A%2F%2Fjuejin.im%2Fpost%2F5bfe771251882509a7681b3a) > > 1六、[亿级流量系统架构之如何设计全链路99.99%高可用架构](https://juejin.cn/post/6844903727699230734)**