JavaShuo
栏目
标签
End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension
时间 2020-12-30
原文
原文链接
来源 arXiv 2016.10.31 问题 当前的 RC 模型都是生成单个实体或者单个词,不能够根据问题动态生成答案。基于此,本文提出了 end2end 的 chunk 抽取神经网络。 文章思路 Dynamic Chunk Reader 这一模型分成四步: encode layer 分别使用 bi-GRU 对 passage 和 question 进行编码,这里面的每个词的表示是由 word e
>>阅读原文<<
相关文章
1.
论文笔记--From Answer Extraction to Answer Generation for Machine Reading Comprehension (S-Net)
2.
Joint Training of Candidate Extraction and Answer Selection for Reading Comprehension 论文阅读笔记
3.
Reading Note: Gated Self-Matching Networks for Reading Comprehension and Question Answering
4.
Simple and Effective Multi-Paragraph Reading Comprehension
5.
MACHINE COMPREHENSION USING MATCH-LSTM AND ANSWER POINTER(MATCH-LSTM)
6.
Attention-over-Attention Neural Networks for Reading Comprehension 讯飞
7.
【论文翻译+笔记】Neural Machine Reading Comprehension: Methods and Trends
8.
machine comprehension using match-lstm and answer pointer
9.
[ICLR2017] Machine Comprehension Using Match-LSTM and Answer Pointer
10.
A Deep Cascade Model for Multi-Document Reading Comprehension瀑布模型 阅读理解笔记
更多相关文章...
•
Swift for 循环
-
Swift 教程
•
Scala for循环
-
Scala教程
•
RxJava操作符(七)Conditional and Boolean
•
算法总结-股票买卖
相关标签/搜索
ranking
answer
chunk
extraction
comprehension
reading
action.....and
between...and
react+and
for...of
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Duang!超快Wi-Fi来袭
2.
机器学习-补充03 神经网络之**函数(Activation Function)
3.
git上开源maven项目部署 多module maven项目(多module maven+redis+tomcat+mysql)后台部署流程学习记录
4.
ecliple-tomcat部署maven项目方式之一
5.
eclipse新导入的项目经常可以看到“XX cannot be resolved to a type”的报错信息
6.
Spark RDD的依赖于DAG的工作原理
7.
VMware安装CentOS-8教程详解
8.
YDOOK:Java 项目 Spring 项目导入基本四大 jar 包 导入依赖,怎样在 IDEA 的项目结构中导入 jar 包 导入依赖
9.
简单方法使得putty(windows10上)可以免密登录树莓派
10.
idea怎么用本地maven
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文笔记--From Answer Extraction to Answer Generation for Machine Reading Comprehension (S-Net)
2.
Joint Training of Candidate Extraction and Answer Selection for Reading Comprehension 论文阅读笔记
3.
Reading Note: Gated Self-Matching Networks for Reading Comprehension and Question Answering
4.
Simple and Effective Multi-Paragraph Reading Comprehension
5.
MACHINE COMPREHENSION USING MATCH-LSTM AND ANSWER POINTER(MATCH-LSTM)
6.
Attention-over-Attention Neural Networks for Reading Comprehension 讯飞
7.
【论文翻译+笔记】Neural Machine Reading Comprehension: Methods and Trends
8.
machine comprehension using match-lstm and answer pointer
9.
[ICLR2017] Machine Comprehension Using Match-LSTM and Answer Pointer
10.
A Deep Cascade Model for Multi-Document Reading Comprehension瀑布模型 阅读理解笔记
>>更多相关文章<<