import numpy as np import pandas as pd from pandas import Series,DataFrame
months = {'JAN' : 1, 'FEB' : 2, 'MAR' : 3, 'APR' : 4, 'MAY' : 5, 'JUN' : 6, 'JUL' : 7, 'AUG' : 8, 'SEP' : 9, 'OCT': 10, 'NOV': 11, 'DEC' : 12} of_interest = ['Obama, Barack', 'Romney, Mitt', 'Santorum, Rick', 'Paul, Ron', 'Gingrich, Newt'] parties = { 'Bachmann, Michelle': 'Republican', 'Romney, Mitt': 'Republican', 'Obama, Barack': 'Democrat', "Roemer, Charles E. 'Buddy' III": 'Reform', 'Pawlenty, Timothy': 'Republican', 'Johnson, Gary Earl': 'Libertarian', 'Paul, Ron': 'Republican', 'Santorum, Rick': 'Republican', 'Cain, Herman': 'Republican', 'Gingrich, Newt': 'Republican', 'McCotter, Thaddeus G': 'Republican', 'Huntsman, Jon': 'Republican', 'Perry, Rick': 'Republican' }
读取文件usa_election.txt
python
df = pd.read_csv('data/usa_election.txt') df.head()
查看文件样式及基本信息app
【知识点】使用map函数+字典,新建一列各个候选人所在党派party函数
df['parties'] = df['cand_nm'].map(parties) # 查看单独一行,是否加上了'party'一列
使用np.unique()
函数查看colums:party
这一列中有哪些元素rest
df['parties'].unique()
使用value_counts()函数,统计party列中各个元素出现次数,value_counts()是Series中的,无参,返回一个带有每一个元素出现次数的Seriescode
df['parties'].value_counts()
【知识点】使用groupby()
函数,查看各个党派收到的政治献金总数contb_receipt_amt
orm
df.groupby(by='parties')['contb_receipt_amt'].sum()
查看具体天天各个党派收到的政治献金总数contb_receipt_amt 。使用groupby([多个分组参数])索引
df.groupby(by=['contb_receipt_dt','parties'])['contb_receipt_amt'].sum()
将表中日期格式转换为'yyyy-mm-dd'
。日期格式,经过函数加map方式进行转换ip
def func(s): # 20-JUN-11 day,month,year = s.split('-') month = months[month] return f'20{year}-{month}-{day}' df['contb_receipt_dt'] = df['contb_receipt_dt'].apply(func)
获得天天各政党所收政治献金数目。 考察知识点:groupby(多个字段)
数据分析
cand_nm_df = df.groupby(by=['cand_nm','contb_receipt_amt'])['contb_receipt_dt'].sum() cand_nm_df
【知识点】使用 unstack() 将上面所得数据中的party行索引变成列索引pandas
查看老兵(捐献者职业)DISABLED VETERAN主要支持谁 :查看老兵们捐赠给谁的钱最多
#获取老兵对应的行数据 df['contbr_occupation'] == 'DISABLED VETERAN' old_bing_df = df.loc[df['contbr_occupation'] == 'DISABLED VETERAN'] old_bing_df.groupby(by='cand_nm')['contb_receipt_amt'].sum()
把索引变成列,Series变量.reset_index()
找出各个候选人的捐赠者中,捐赠金额最大的人的职业以及捐献额 .经过query("查询条件来查找捐献人职业")
df['contb_receipt_amt'].max() df.query('contb_receipt_amt == 1944042.43')